Naturality of homogeneous metrics on Stiefel manifolds SO(m+1)/SO(m-1)

被引:15
作者
Abbassi, Mohamed Tahar Kadaoui [2 ]
Kowalski, Oldrich [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
[2] Univ Sidi Mohamed Ben Abdallah, Fac Sci Dhar El Mahraz, Dept Math, Fes, Fes, Morocco
关键词
Unit tangent (sphere) bundle; g-natural metric; TANGENT SPHERE BUNDLES; UNIT VECTOR-FIELDS; CURVATURE; VOLUME; ENERGY;
D O I
10.1016/j.difgeo.2009.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the unit tangent sphere bundle T1Sm of the standard sphere S-m can be naturally identified with the Stiefel manifold V2Rm+1 = SO(m + 1)/SO(m - 1). In this paper, we construct the (1-1) correspondence between all SO(m + 1)-invariant homogeneous metrics oil V2Rm+1 and all so-called g-natural metrics oil T1Sm. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 43 条
[21]   Relationship between volume and energy of vector fields [J].
Gil-Medrano, O .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 15 (02) :137-152
[22]  
Kerr MM, 1998, MICH MATH J, V45, P115
[23]   On tangent sphere bundles with small or large constant radius [J].
Kowalski, O ;
Sekizawa, M .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (3-4) :207-219
[24]  
KOWALSKI O, 1971, J REINE ANGEW MATH, V250, P124
[25]  
Kowalski O., 1988, Bull. Tokyo Gakugei Univ, V40, P1
[26]  
KRUPKA D, 1984, CZECH MATH J, V34, P588
[27]   RIEMANNIAN METRICS ON TANGENT-BUNDLES [J].
MUSSO, E ;
TRICERRI, F .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 150 :1-19
[28]  
NIJENHUIS A, 1972, DIFFERENTIAL GEOMETR, P317
[29]  
Oproiu V, 1999, PUBL MATH-DEBRECEN, V55, P261
[30]  
Sasaki S., 1962, TOHOKU MATH J, V14, P146, DOI [10.2748/tmj/1178244169, DOI 10.2748/TMJ/1178244169]