Second-harmonic generation in noncentrosymmetric phosphates

被引:60
作者
Li, Zhi [1 ]
Liu, Qiong [1 ,2 ]
Wang, Ying [1 ]
Iitaka, Toshiaki [3 ]
Su, Haibin [4 ,5 ]
Tohyama, Takami [6 ]
Yang, Zhihua [1 ]
Pan, Shilie [1 ]
机构
[1] Chinese Acad Sci, Xinjiang Key Lab Elect Informat Mat & Devices, Key Lab Funct Mat & Devices Special Environm, Xinjiang Tech Inst Phys & Chem, 40-1 South Beijing Rd, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] RIKEN, Computat Astrophys Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[4] Nanyang Technol Univ, Div Mat Sci, 50 Nanyang Ave, Singapore 639798, Singapore
[5] Nanyang Technol Univ, Inst Adv Studies, 60 Nanyang View, Singapore 639673, Singapore
[6] Tokyo Univ Sci, Dept Appl Phys, Tokyo 1258585, Japan
基金
中国国家自然科学基金;
关键词
NONLINEAR-OPTICAL RESPONSE; SEMICONDUCTORS; POLARIZATION;
D O I
10.1103/PhysRevB.96.035205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the discovery of more and more phosphates with relatively strong nonlinear optic effect, we studied the mechanism of the second-harmonic generation (SHG) effect in several phosphates by band model and first-principles calculations. When the energy of an incident photon is much smaller than the band gap of material, the SHG is almost frequency independent and determined by the combination of Berry connection and a symmetric tensor. The SHG effect in phosphates can be enhanced by the enhancement of orbital hybridization or the reduction of charge-transfer energy, which results in widened bandwidth of occupied state and reduced band gap in the electronic structure, respectively. By the first-principles calculation on the electronic structures of several phosphates-BPO4, LiCs2PO4, beta-Li3VO4, and beta-Li3PO4-we interpreted the relatively strong SHG effect in LiCs2PO4 and beta-Li3VO4 as the consequence of the reduced charge-transfer energy compared to their parent beta-Li3PO4, while the enhanced SHG in BPO4 is resulting from enhanced orbital hybridization.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Spin and diamagnetism in linear and nonlinear optics -: art. no. 043806 [J].
Andersen, T ;
Keller, O ;
Hübner, W ;
Johansson, B .
PHYSICAL REVIEW A, 2004, 70 (04) :043806-1
[2]   NONLINEAR-OPTICAL SUSCEPTIBILITIES OF SEMICONDUCTORS - RESULTS WITH A LENGTH-GAUGE ANALYSIS [J].
AVERSA, C ;
SIPE, JE .
PHYSICAL REVIEW B, 1995, 52 (20) :14636-14645
[3]  
Blount E., 1962, SOLID STATE PHYS ADV, V13
[4]  
Boyd R. W., Nonlinear Optics, V3rd Ed.
[5]   Symmetry analysis of the nonlinear optical response: Second harmonic generation at surfaces of antiferromagnets [J].
Dahn, A ;
Hubner, W ;
Bennemann, KH .
PHYSICAL REVIEW LETTERS, 1996, 77 (18) :3929-3932
[6]  
Deyo E., 1917, ARXIV09041917
[7]   The anomalous Hall effect and magnetic monopoles in momentum space [J].
Fang, Z ;
Nagaosa, N ;
Takahashi, KS ;
Asamitsu, A ;
Mathieu, R ;
Ogasawara, T ;
Yamada, H ;
Kawasaki, M ;
Tokura, Y ;
Terakura, K .
SCIENCE, 2003, 302 (5642) :92-95
[8]   Second harmonic generation in the centrosymmetric antiferromagnet NiO -: art. no. 137202 [J].
Fiebig, M ;
Fröhlich, D ;
Lottermoser, T ;
Pavlov, VV ;
Pisarev, RV ;
Weber, HJ .
PHYSICAL REVIEW LETTERS, 2001, 87 (13)
[9]   ABINIT: First-principles approach to material and nanosystem properties [J].
Gonze, X. ;
Amadon, B. ;
Anglade, P. -M. ;
Beuken, J. -M. ;
Bottin, F. ;
Boulanger, P. ;
Bruneval, F. ;
Caliste, D. ;
Caracas, R. ;
Cote, M. ;
Deutsch, T. ;
Genovese, L. ;
Ghosez, Ph. ;
Giantomassi, M. ;
Goedecker, S. ;
Hamann, D. R. ;
Hermet, P. ;
Jollet, F. ;
Jomard, G. ;
Leroux, S. ;
Mancini, M. ;
Mazevet, S. ;
Oliveira, M. J. T. ;
Onida, G. ;
Pouillon, Y. ;
Rangel, T. ;
Rignanese, G. -M. ;
Sangalli, D. ;
Shaltaf, R. ;
Torrent, M. ;
Verstraete, M. J. ;
Zerah, G. ;
Zwanziger, J. W. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) :2582-2615
[10]  
Haug H., 2008, Quantum Kinetics in Transport and Optics of Semiconductors