Integrating elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover mapping

被引:23
作者
Sturari, Mirco [1 ]
Frontoni, Emanuele [1 ]
Pierdicca, Roberto [1 ]
Mancini, Adriano [1 ]
Malinverni, Eva Savina [2 ]
Tassetti, Anna Nora [3 ]
Zingaretti, Primo [1 ]
机构
[1] Univ Politecn Marche, DII, Via Brecce Bianche, I-60121 Ancona, Italy
[2] Univ Politecn Marche, DICEA, Ancona, Italy
[3] Council Researches Inst Marine Sci CNR ISMAR, Ancona, Italy
关键词
Hybrid (pixel/object) classification; Land Use/Land Cover (LULC); LiDAR; Multispectral images; Data integration; Winner-Takes-All (WTA); CLC; LIDAR DATA; AIRBORNE LIDAR; CLASSIFICATION; OBJECT; SURFACE;
D O I
10.1080/22797254.2017.1274572
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The combination of elevation data together with multispectral high-resolution images is a new methodology for obtaining land use/land cover classification. It represents a step forward for both the accuracy and automation of LULC applications and allows users to setup thematic assignments through rules based on feature attributes and human expert interpretation of land usage. The synergy between different types of information means that LiDAR can give new hints at both the segmentation and hybrid classification steps, leading to a joint use of multispectral, spatial and elevation data. The output is a thematic map characterized by a custom-designed legend that is able to discriminate between land cover classes with similar spectral characteristics ( level 3 of the CLC legend). Experimental results from a hilly farmland area with some urban structures (Musone river basin, Ancona, Italy) are used to highlight how the proposed methodology enhances land cover classification in heterogeneous environments.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 44 条
[1]  
Alia S.S., 2008, INT ARCH PHOTOGRAMME, VXXXVII, P1089
[2]  
Alonso MC, 2008, LECT NOTES COMPUT SC, V5359, P85, DOI 10.1007/978-3-540-89646-3_9
[3]  
An Wang, 2012, Proceedings of the 2012 Second International Workshop on Earth Observation and Remote Sensing Applications (EORSA 2012), P181, DOI 10.1109/EORSA.2012.6261161
[4]   Automatic extraction of building roofs using LIDAR data and multispectral imagery [J].
Awrangjeb, Mohammad ;
Zhang, Chunsun ;
Fraser, Clive S. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 83 :1-18
[5]   Forest Road Detection Using LiDAR Data [J].
Azizi, Zahra ;
Najafi, Akbar ;
Sadeghian, Saeed .
JOURNAL OF FORESTRY RESEARCH, 2014, 25 (04) :975-980
[6]   Pixel, object and hybrid classification comparisons [J].
Bernardini, A. ;
Frontoni, E. ;
Malinverni, E. S. ;
Mancini, A. ;
Tassetti, A. N. ;
Zingaretti, P. .
JOURNAL OF SPATIAL SCIENCE, 2010, 55 (01) :43-54
[7]   Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis [J].
Bork, Edward W. ;
Su, Jason G. .
REMOTE SENSING OF ENVIRONMENT, 2007, 111 (01) :11-24
[8]  
Burkhard B., 2009, Landscape Online
[9]   Mapping ecosystem service supply, demand and budgets [J].
Burkhard, Benjamin ;
Kroll, Franziska ;
Nedkov, Stoyan ;
Mueller, Felix .
ECOLOGICAL INDICATORS, 2012, 21 :17-29
[10]  
Collins C., 2004, ASPRS 2004 ANN C P D