SOLUTIONS OF ELLIPTIC EQUATIONS WITH A LEVEL SURFACE PARALLEL TO THE BOUNDARY: STABILITY OF THE RADIAL CONFIGURATION

被引:17
作者
Ciraolo, Giulio [1 ]
Magnanini, Rolando [2 ]
Sakaguchi, Shigeru [3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Florence, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[3] Tohoku Univ, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2016年 / 128卷
关键词
SYMMETRY; SERRINS;
D O I
10.1007/s11854-016-0011-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive solution of a homogeneous Dirichlet boundary value problem or initial-value problems for certain elliptic or parabolic equations must be radially symmetric and monotone in the radial direction if just one of its level surfaces is parallel to the boundary of the domain. Here, for the elliptic case, we prove the stability counterpart of that result. We show that if the solution is almost constant on a surface at a fixed distance from the boundary, then the domain is almost radially symmetric, in the sense that is contained in and contains two concentric balls B-re and B-ri, with the difference r(e)-r(i) (linearly) controlled by a suitable norm of the deviation of the solution from a constant. The proof relies on and elaborates arguments developed by Aftalion, Busca, and Reichel.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 20 条
[1]  
Aftalion A., 1999, Adv. Differ. Equ., V4, P907
[2]  
Aleksandrov A. D., 1962, Transl. Am. Math. Soc., V21, P412
[3]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[4]   Serrin-type overdetermined problems: An alternative proof [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 190 (02) :267-280
[5]   On the stability of the Serrin problem [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (06) :1566-1583
[6]   Stability of radial symmetry for a Monge-Ampere overdetermined problem [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (03) :445-453
[7]  
Caffarelli L., 2005, A Geometric Approach to Free Boundary Problems
[8]   Symmetry of minimizers with a level surface parallel to the boundary [J].
Ciraolo, Giulio ;
Magnanini, Rolando ;
Sakaguchi, Shigeru .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (11) :2789-2804
[9]   A NOTE ON SERRIN'S OVERDETERMINED PROBLEM [J].
Ciraolo, Giulio ;
Magnanini, Rolando .
KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) :728-736
[10]  
Fraenkel LE., 2000, CAMBRIDGE TRACTS MAT