ON THE CONTROLLABILITY OF THE NEUMANN PROBLEM FOR THE WAVE EQUATION

被引:0
作者
Negrescu, Alexandru [1 ]
机构
[1] Univ Politehn Bucuresti, Fac Sci Appl, Bucharest, Romania
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2017年 / 79卷 / 02期
关键词
wave equation; Neumann boundary conditions; exact controllability; STABILIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the controllability of the Neumann problem for the wave equation at T > 2 pi, using the ontoness approach.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 14 条
[1]  
[Anonymous], ARXIV14073706
[2]   On the exact controllability of the wave equation with interior and boundary controls [J].
Bui, AT .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (01) :19-35
[3]   CONTROL AND STABILIZATION FOR THE WAVE-EQUATION IN A BOUNDED DOMAIN [J].
CHEN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (01) :66-81
[4]  
Komornik V., 2005, Fourier series in control theory
[5]   REGULARITY THEORY OF HYPERBOLIC-EQUATIONS WITH NONHOMOGENEOUS NEUMANN BOUNDARY-CONDITIONS .2. GENERAL BOUNDARY DATA [J].
LASIECKA, I ;
TRIGGIANI, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (01) :112-164
[6]   EXACT CONTROLLABILITY OF THE WAVE-EQUATION WITH NEUMANN BOUNDARY CONTROL [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (03) :243-290
[7]  
Lions J.L, 1968, Problemes Aux Limites Non Homogenes
[8]  
Lions J-L., 1988, CONTROLABILIT EXACTE
[9]   EXACT CONTROLLABILITY, STABILIZATION AND PERTURBATIONS FOR DISTRIBUTED SYSTEMS [J].
LIONS, JL .
SIAM REVIEW, 1988, 30 (01) :1-68
[10]  
Negrescu A., 2015, SCI B A, V77, P157