Comments on the complete generalized fractional Fourier transform

被引:0
|
作者
Zheng, Liying [1 ]
Shi, Daming [2 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taejon, South Korea
关键词
Fractional Fourier transform; Fourier transform; Transform order; Period parameter;
D O I
10.1016/j.optcom.2009.11.031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this research, we thoroughly investigate the complete generalized fractional Fourier transform (CGFRFT) and draw the following conclusions that are different from the original literature: (1) The CGFRFT is not a generalized version, but a special case that ignores the marginal postulate; (2) If the period parameter is not a multiple of four, the CGFRFT can never perform a Fourier transform regardless of the value of the transform order. The simulation results of a rectangular signal support the above conclusions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:917 / 919
页数:3
相关论文
共 50 条
  • [31] On fractional Fourier transform moments
    Alieva, T
    Bastiaans, MJ
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 320 - 323
  • [32] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [33] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [34] Riesz fractional order derivative in Fractional Fourier Transform domain: An insight
    Kaur, Kanwarpreet
    Jindal, Neeru
    Singh, Kulbir
    DIGITAL SIGNAL PROCESSING, 2019, 93 : 58 - 69
  • [35] Unlimited Sampling Theorem Based on Fractional Fourier Transform
    Zhao, Hui
    Li, Bing-Zhao
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [36] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Gao, Wen-Biao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2298 - 2317
  • [37] Uncertainty principles of hypercomplex functions for fractional Fourier transform
    Wen-Biao Gao
    Fractional Calculus and Applied Analysis, 2023, 26 : 2298 - 2317
  • [38] Discrete fractional Fourier transform based on orthogonal projections
    Pei, SC
    Yeh, MH
    Tseng, CC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1335 - 1348
  • [39] Characterizations of the gyrator transform via the fractional Fourier transform
    Kagawa, Toshinao
    Suzuki, Toshio
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (05) : 399 - 413
  • [40] A Color Image Encryption Algorithm Based on Generalized Synchronization Theorem and the Fractional Fourier Transform
    Yan, Shi-jie
    Han, Shuang-shuang
    Min, Le-quan
    INTERNATIONAL CONFERENCE ON COMPUTER, NETWORK SECURITY AND COMMUNICATION ENGINEERING (CNSCE 2014), 2014, : 155 - 163