Comments on the complete generalized fractional Fourier transform

被引:0
|
作者
Zheng, Liying [1 ]
Shi, Daming [2 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taejon, South Korea
关键词
Fractional Fourier transform; Fourier transform; Transform order; Period parameter;
D O I
10.1016/j.optcom.2009.11.031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this research, we thoroughly investigate the complete generalized fractional Fourier transform (CGFRFT) and draw the following conclusions that are different from the original literature: (1) The CGFRFT is not a generalized version, but a special case that ignores the marginal postulate; (2) If the period parameter is not a multiple of four, the CGFRFT can never perform a Fourier transform regardless of the value of the transform order. The simulation results of a rectangular signal support the above conclusions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:917 / 919
页数:3
相关论文
共 50 条
  • [21] Discrete fractional Fourier transform: Vandermonde approach
    Moya-Cessa, Hector M.
    Soto-Eguibar, Francisco
    IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (06) : 908 - 916
  • [22] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [23] Fractional Fourier Transform Meets Transformer Encoder
    Sahinuc, Furkan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2258 - 2262
  • [24] Fractional Fourier Transform in Time Series Prediction
    Koc, Emirhan
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2542 - 2546
  • [25] Optical OFDM based on the fractional Fourier transform
    Cincotti, Gabriella
    NEXT-GENERATION OPTICAL COMMUNICATION: COMPONENTS, SUB-SYSTEMS, AND SYSTEMS, 2012, 8284
  • [26] Computation of the fractional Fourier transform
    Bultheel, A
    Martinez Sulbaran HE
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) : 182 - 202
  • [27] Fractional Fourier Transform Reflectometry
    Shiloh, Lihi
    Eyal, Avishay
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [28] Analysis of Dirichlet and Generalized "Hamming" window functions in the fractional Fourier transform domains
    Kumar, Sanjay
    Singh, Kulbir
    Saxena, Rajiv
    SIGNAL PROCESSING, 2011, 91 (03) : 600 - 606
  • [29] Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator
    Pathak, R. S.
    Prasad, Akhilesh
    Kumar, Manish
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2012, 3 (02) : 239 - 254
  • [30] Fractional Fourier transform of tempered distributions and generalized pseudo-differential operator
    R. S. Pathak
    Akhilesh Prasad
    Manish Kumar
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 239 - 254