Comments on the complete generalized fractional Fourier transform

被引:0
|
作者
Zheng, Liying [1 ]
Shi, Daming [2 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Kyungpook Natl Univ, Sch Elect Engn & Comp Sci, Taejon, South Korea
关键词
Fractional Fourier transform; Fourier transform; Transform order; Period parameter;
D O I
10.1016/j.optcom.2009.11.031
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this research, we thoroughly investigate the complete generalized fractional Fourier transform (CGFRFT) and draw the following conclusions that are different from the original literature: (1) The CGFRFT is not a generalized version, but a special case that ignores the marginal postulate; (2) If the period parameter is not a multiple of four, the CGFRFT can never perform a Fourier transform regardless of the value of the transform order. The simulation results of a rectangular signal support the above conclusions. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:917 / 919
页数:3
相关论文
共 50 条
  • [1] The generalized continuous wavelet transform associated with the fractional Fourier transform
    Prasad, Akhilesh
    Manna, Santanu
    Mahato, Ashutosh
    Singh, V. K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 660 - 671
  • [2] Comments on "Generalized Sampling Expansion for Bandlimited Signals Associated With Fractional Fourier Transform"
    Sharma, K. K.
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (12) : 761 - 761
  • [3] Fractional Fourier transform of generalized functions
    Zayed, AI
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 7 (3-4) : 299 - 312
  • [4] A study on the interplay between generalized Boas transform and fractional Fourier transform
    Khanna, Nikhil
    Kaushik, S. K.
    Dorjai, Stanzin
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,
  • [5] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165
  • [6] Two-dimensional affine generalized fractional Fourier transform
    Pei, SC
    Ding, JJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (04) : 878 - 897
  • [7] Solving Generalized Heat and Generalized Laplace Equations Using Fractional Fourier Transform
    Sulasteri, Sri
    Bahri, Mawardi
    Bachtiar, Nasrullah
    Kusuma, Jeffry
    Ribal, Agustinus
    FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [8] Generalized convolution theorem associated with fractional Fourier transform
    Shi, Jun
    Sha, Xuejun
    Song, Xiaocheng
    Zhang, Naitong
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2014, 14 (13) : 1340 - 1351
  • [9] Generalized Random Demodulator Associated with Fractional Fourier Transform
    Zhao, Haoran
    Qiao, Liyan
    Zhang, Jingchao
    Fu, Ning
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5161 - 5173
  • [10] Generalized Random Demodulator Associated with Fractional Fourier Transform
    Haoran Zhao
    Liyan Qiao
    Jingchao Zhang
    Ning Fu
    Circuits, Systems, and Signal Processing, 2018, 37 : 5161 - 5173