NUMERICAL METHOD TO A CLASS OF BOUNDARY VALUE PROBLEMS

被引:1
作者
Qiu, Yu-Yang [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Stat & Math, Hangzhou, Zhejiang, Peoples R China
来源
THERMAL SCIENCE | 2018年 / 22卷 / 04期
基金
中国国家自然科学基金;
关键词
boundary value problems; the least square problem; Toeplitz constraint; conjugate gradient least square; matrix iteration; VARIATIONAL ITERATION METHOD; LEAST-SQUARES PROBLEMS; EQUATIONS; SYSTEMS;
D O I
10.2298/TSCI1804877Q
中图分类号
O414.1 [热力学];
学科分类号
摘要
A class of boundary value problems can be transformed uniformly to a least square problem with Toeplitz constraint. Conjugate gradient least square, a matrix iteration method, is adopted to solve this problem, and the solution process is elucidated step by step so that the example can be used as a paradigm for other applications.
引用
收藏
页码:1877 / 1883
页数:7
相关论文
共 15 条
[11]   Circulant matrix and conformal mapping for solving partial differential equations [J].
Liu, Xiao-Yan ;
Li, Wen ;
Li, Ming ;
Chen, C. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (03) :67-76
[12]   NUMERICAL ANALYSIS OF THE (2+1)-DIMENSIONAL BOITI-LEON-PEMPINELLI EQUATION [J].
Lu, Jun-Feng .
THERMAL SCIENCE, 2017, 21 (04) :1657-1663
[13]   ALGORITHM-583 - LSQR - SPARSE LINEAR-EQUATIONS AND LEAST-SQUARES PROBLEMS [J].
PAIGE, CC ;
SAUNDERS, MA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :195-209
[14]   An analytical solution to the thermal problems with varying boundary conditions around a moving source [J].
Salimi, Solaleh ;
Bahernmat, Pouya ;
Haghpanahi, Mohammad .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) :6690-6707
[15]  
STIEFEL E, 1952, WISS Z TH DRESDEN, V2, P441