A mollification based operator splitting method for convection diffusion equations

被引:6
作者
Acosta, Carlos D. [2 ]
Mejia, Carlos E. [1 ]
机构
[1] Univ Nacl Colombia, Dept Math, Medellin, Colombia
[2] Univ Nacl Colombia, Dept Math & Stat, Manizales, Colombia
关键词
Convection-diffusion; Discrete mollification; Operator splitting; Explicit schemes; HYPERBOLIC CONSERVATION-LAWS; FLOCCULATED SUSPENSIONS; DISCRETE MOLLIFICATION;
D O I
10.1016/j.camwa.2009.11.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to show that discrete mollification is a suitable ingredient in operator splitting methods for the numerical solution of nonlinear convection-diffusion equations. In order to achieve this goal, we substitute the second step of the operator splitting method of Karlsen and Risebro (1997) [1] for a mollification step and prove that the convergence features are fairly well preserved. We end the paper with illustrative numerical experiments. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1397 / 1408
页数:12
相关论文
共 16 条
[11]   Operator splitting methods for systems of convection-diffusion equations: Nonlinear error mechanisms and correction strategies [J].
Karlsen, KH ;
Lie, KA ;
Natvig, JR ;
Nordhaug, HF ;
Dahle, HK .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (02) :636-663
[12]  
Mejía CE, 2001, APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, P213
[13]  
MURIO D. A., 2002, INVERSE ENG HDB
[14]   NON-OSCILLATORY CENTRAL DIFFERENCING FOR HYPERBOLIC CONSERVATION-LAWS [J].
NESSYAHU, H ;
TADMOR, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 1990, 87 (02) :408-463
[15]  
STYNES M, 2005, ACTA NUMERICA
[16]   Numerical solutions for convection-diffusion equation using El-Gendi method [J].
Temsah, R. S. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) :760-769