ON ONE EXTENSION THEOREM DEALING WITH WEIGHTED ORLICZ-SLOBODETSKII SPACE. ANALYSIS ON LIPSCHITZ SUBGRAPH AND LIPSCHITZ DOMAIN

被引:8
作者
Dhara, Raj Narayan [1 ]
Kalamajska, Agnieszka [2 ]
机构
[1] Polish Acad Sci, Inst Math, Ul Sniadeckich 8,POB 21, PL-00956 Warsaw, Poland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2016年 / 19卷 / 02期
关键词
Orlicz spaces; weighted Orlicz-Slobodetskii spaces; weighted Orlicz-Sobolev spaces; extension theorem; trace embedding theorem; SOBOLEV SPACE; TRACE SPACES; INEQUALITIES; EQUATIONS;
D O I
10.7153/mia-19-36
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Having a given weight rho(x) = tau(dist(x, partial derivative Omega)) defined on Lipschitz boundary domain Omega and an Orlicz function Psi, we construct the subordinated weight omega(.,.) defined on partial derivative Omega x partial derivative Omega and extension operator Ext(L) : Lip(partial derivative Omega) bar right arrow Lip(Omega) form Lipschitz functions defined on. Omega to Lipschitz functions defined on (Omega) over bar, independent of tau and Psi, in such a way that Ext(L) extends to the bounded operator from the subspace of weighted Orlicz-Slobodetskii space Y-omega(Psi,Psi) (partial derivative Omega) generated by Lipschitz functions and subordinated to the weight. to Orlicz-Sobolev space W-rho(1,Psi) (Omega). More detailed analysis on Lipschitz subgraph is also provided. Result is new in the unweighted Orlicz setting for general function Psi as well as in the weighted L-p setting.
引用
收藏
页码:451 / 488
页数:38
相关论文
共 75 条
[1]   On the trace space of a Sobolev space with a radial weight [J].
Abels, Helmut ;
Krbec, Miroslav ;
Schumacher, Katrin .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (03) :259-276
[2]  
[Anonymous], 1960, SOVIET MATH DOKL
[3]  
[Anonymous], 1971, J. Funct. Anal.
[4]  
[Anonymous], 1993, HARMONIC ANAL REAL V
[5]  
[Anonymous], 1993, OXFORD MATH MONOGR
[6]  
[Anonymous], KRAEV ZADACHI MAT FI
[7]  
[Anonymous], 2006, J. Math. Sci, DOI [10.1007/s10958-005-0497-0, DOI 10.1007/S10958-005-0497-0]
[8]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[9]  
[Anonymous], UCHEN ZAP LENINGR GO
[10]  
[Anonymous], 2001, MATTHEW