Mimetic Neural Networks: A Unified Framework for Protein Design and Folding

被引:7
作者
Eliasof, Moshe [1 ]
Boesen, Tue [2 ]
Haber, Eldad [2 ]
Keasar, Chen [1 ]
Treister, Eran [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
[2] Univ British Columbia, Dept EOAS, Vancouver, BC, Canada
来源
FRONTIERS IN BIOINFORMATICS | 2022年 / 2卷
关键词
graph neural networks; protein design; protein folding; deep learning; protein sructure prediction; STRUCTURE PREDICTION; ACCURATE PREDICTION; SEQUENCE; ENHANCEMENT; POTENTIALS; CONTACTS; MODEL;
D O I
10.3389/fbinf.2022.715006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advancements in machine learning techniques for protein structure prediction motivate better results in its inverse problem-protein design. In this work we introduce a new graph mimetic neural network, MimNet, and show that it is possible to build a reversible architecture that solves the structure and design problems in tandem, allowing to improve protein backbone design when the structure is better estimated. We use the ProteinNet data set and show that the state of the art results in protein design can be met and even improved, given recent architectures for protein folding.
引用
收藏
页数:13
相关论文
共 80 条
[1]   A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments [J].
Abriata, Luciano A. ;
Tamo, Giorgio E. ;
Dal Peraro, Matteo .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) :1100-1112
[2]   Accurate prediction of solvent accessibility using neural networks-based regression [J].
Adamczak, R ;
Porollo, A ;
Meller, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 56 (04) :753-767
[3]   ProteinNet: a standardized data set for machine learning of protein structure [J].
AlQuraishi, Mohammed .
BMC BIOINFORMATICS, 2019, 20 (1)
[4]   End-to-End Differentiable Learning of Protein Structure [J].
AlQuraishi, Mohammed .
CELL SYSTEMS, 2019, 8 (04) :292-+
[5]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[6]   Differentiable, multi-dimensional, knowledge-based energy terms for torsion angle probabilities and propensities [J].
Amir, El-Ad David ;
Kalisman, Nir ;
Keasar, Chen .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 72 (01) :62-73
[7]  
Anand N, 2020, bioRxiv, DOI [10.1101/2020.01.06.895466, 10.1101/2020.01.06.895466, DOI 10.1101/2020.01.06.895466]
[8]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[9]   An enumerative algorithm for de novo design of proteins with diverse pocket structures [J].
Basanta, Benjamin ;
Bick, Matthew J. ;
Bera, Asim K. ;
Norn, Christoffer ;
Chow, Cameron M. ;
Carter, Lauren P. ;
Goreshnik, Inna ;
Dimaio, Frank ;
Baker, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (36) :22135-22145
[10]  
Bates PA, 2001, PROTEINS, P39