On the maximum bias functions of MM-estimates and constrained M-estimates of regression

被引:11
作者
Berrendero, Jose R. [1 ]
Mendes, Beatriz V. M.
Tyler, David E.
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Fed Rio de Janeiro, Inst Matemat, COPPEAD, BR-21941918 Rio De Janeiro, Brazil
[3] Rutgers State Univ, Hill Ctr, Dept Stat, Piscataway, NJ 08854 USA
关键词
robust regression; M-estimates; S-estimates; constrained M-estimates; maximum bias curves; breakdown point; gross error sensitivity;
D O I
10.1214/009053606000000975
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the maximum bias functions of the MM-estimates and the constrained M-estimates or CM-estimates of regression and compare them to the maximum bias functions of the S-estimates and the tau-estimates of regression. In these comparisons, the CM-estimates tend to exhibit the most favorable bias-robustness properties. Also, under the Gaussian model, it is shown how one can construct a CM-estimate which has a smaller maximum bias function than a given S-estimate, that is, the resulting CM-estimate dominates the S-estimate in terms of maxbias and, at the same time, is considerably more efficient.
引用
收藏
页码:13 / 40
页数:28
相关论文
共 14 条
[1]   Maximum bias curves for robust regression with non-elliptical regressors [J].
Berrendero, JR ;
Zamar, RH .
ANNALS OF STATISTICS, 2001, 29 (01) :224-251
[2]  
HAMPEL FR, 1986, ROBUST STAT APPRAOCH
[3]   LOWER BOUNDS FOR CONTAMINATION BIAS - GLOBALLY MINIMAX VERSUS LOCALLY LINEAR-ESTIMATION [J].
HE, XM ;
SIMPSON, DG .
ANNALS OF STATISTICS, 1993, 21 (01) :314-337
[4]   A LOCAL BREAKDOWN PROPERTY OF ROBUST-TESTS IN LINEAR-REGRESSION [J].
HE, XM .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 38 (02) :294-305
[5]  
MARONNA RA, 1979, LECT NOTES MATH, V757, P91
[6]   MIN-MAX BIAS ROBUST REGRESSION [J].
MARTIN, RD ;
YOHAI, VJ ;
ZAMAR, RH .
ANNALS OF STATISTICS, 1989, 17 (04) :1608-1630
[7]  
MENDES B, 1996, ROBUST STAT DATA ANA, V109, P299
[8]  
Rousseeuw P. J., 1984, LECTURE NOTES STATIS, V26, P256
[9]   LEAST MEDIAN OF SQUARES REGRESSION [J].
ROUSSEEUW, PJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (388) :871-880
[10]   HIGH BREAKDOWN-POINT AND HIGH-EFFICIENCY ROBUST ESTIMATES FOR REGRESSION [J].
YOHAI, VJ .
ANNALS OF STATISTICS, 1987, 15 (02) :642-656