A parallel preconditioned conjugate gradient solution method for finite element problems with coarse-fine mesh formulation

被引:6
作者
Zucchini, A [1 ]
机构
[1] ENEA, INN FIS MACO, CRE E Clementel, I-40129 Bologna, Italy
关键词
finite element; parallel computing; conjugate gradient; multigrid;
D O I
10.1016/S0045-7949(00)00053-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The object of this paper is a parallel preconditioned conjugate gradient iterative solver for finite element problems with coarse-mesh/fine-mesh formulation. An efficient preconditioner is easily derived from the multigrid stiffness matrix. The method has been implemented, for the sake of comparison, both on a IBM-RISC590 and on a Quadrics-QH1, a massive parallel SIMD machine with 128 processors. Examples of solutions of simple linear elastic problems on rectangular grids are presented and convergence and parallel performance are discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:781 / 787
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1992, SMR
[2]  
BIJORCK A, 1990, HDB NUMERICAL ANAL, V1
[3]  
BROWN AR, 1995, SIMULATION SEMICONDU, V6, P336
[4]   A PARALLEL FINITE-ELEMENT METHOD AND ITS PROTOTYPE IMPLEMENTATION ON A HYPERCUBE [J].
CARTER, WT ;
SHAM, TL ;
LAW, KH .
COMPUTERS & STRUCTURES, 1989, 31 (06) :921-934
[5]  
CRIESFIELD MA, 1986, FINITE ELEMENTS SOLU, V1
[6]  
Gallagher R.H., 1975, FINITE ELEM ANAL DES
[7]   A comparison of iterative multi-level finite element solvers [J].
Jouglard, CE ;
Coutinho, ALGA .
COMPUTERS & STRUCTURES, 1998, 69 (05) :655-670
[8]   A PARALLEL FINITE-ELEMENT SOLUTION METHOD [J].
LAW, KH .
COMPUTERS & STRUCTURES, 1986, 23 (06) :845-858
[9]  
MATHIS A, 1998, P PARA98 C JUN 14 UM
[10]  
MATHIS A, 1998, P INT FORTW C MARCH