Property of being semi-Kelley is a sequentially strong Whitney-reversible property

被引:1
作者
Santiago-Santos, Alicia [1 ]
Vidal-Escobar, Ivon [2 ]
机构
[1] Univ Tecnol Mixteca, Inst Fis & Matemat, Carretera Acatlima,Km 2-5, Huajuapan De Leon 69000, Oaxaca, Mexico
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia, Morelia, Michoacan, Mexico
关键词
Continuum; Hyperspace; Property of Kelley; Semi-Kelley; Whitney-reversible property; Strong Whitney-reversible property; Sequentially strong;
D O I
10.1016/j.topol.2018.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuum X is said to be semi-Kelley provided that for each subcontinuum K and for every two maximal limit continua M and L in K either M subset of L or L subset of M. In this paper we show that the property of being semi-Kelley is a sequentially strong Whitney-reversible property, with this result we obtain that the property of being semi-Kelley is a Whitney-reversible property, answering a question posed by A. Illanes in [2]. Moreover, we generalize the Charatonik's Theorem ([4, p. 83, 4.5]) and we prove a version of this theorem on n-fold Symmetric Product. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 7 条
[1]  
Calderon-Camacho I. D., 2014, QUESTIONS ANSWERS GE, V32, P73
[2]  
Castañeda-Alvarado E, 2017, COMMENT MATH UNIV CA, V58, P359, DOI 10.14712/1213-7243.2015.217
[3]  
Charatonik J.J., 1998, Topol. Proc., V23, P69
[4]  
Charatonik J.J., 2003, Quest. Answ. Gen. Topol., V21, P103
[5]  
Illanes A., 1999, Monographs and Textbooks in Pure and Applied Mathematics, V216
[6]  
Nadler S.B., 1992, CONTINUUM THEORY INT, V158
[7]  
Nadler S. B., 1978, Monographs and Textbooks in Pure and Applied Mathematics, V49