Error control and adaptivity for a phase relaxation model

被引:11
作者
Chen, ZM [1 ]
Nochetto, RH
Schmidt, A
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[3] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 04期
关键词
phase relaxation; diffuse interface; subdifferential operator; finite elements; a posteriori estimates; adaptivity;
D O I
10.1051/m2an:2000103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The phase relaxation model is a diffuse interface model with small parameter epsilon which consists of a parabolic PDE for temperature theta and an ODE with double obstacles for phase variable chi. To decouple the system a semi-explicit Euler method with variable step-size tau is used for time discretization, which requires the stability constraint tau less than or equal to epsilon. Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter h are further employed for space discretization. A posteriori error estimates are derived for both unknowns theta and chi, which exhibit the correct asymptotic order in terms of epsilon, h and tau. This result circumvents the use of duality, which does not even apply in this context. Several numerical experiments illustrate the reliability of the estimators and document the excellent performance of the ensuing adaptive method.
引用
收藏
页码:775 / 797
页数:23
相关论文
共 20 条
[1]  
CHEN Z, UNPUB ADAPTIVE FINIT
[2]  
Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123
[3]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[4]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[5]   Adaptive finite element methods for parabolic problems - VI: Analytic semigroups [J].
Eriksson, K ;
Johnson, C ;
Larsson, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) :1315-1325
[6]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77
[7]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .4. NONLINEAR PROBLEMS [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1729-1749
[8]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[9]   A P1-P1 finite element method for a phase relaxation model I:: Quasi-uniform mesh [J].
Jiang, X ;
Nochetto, RH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (03) :1176-1190
[10]   A P1-P1 finite element method for a phase relaxation model II:: Adaptively refined meshes [J].
Jiang, X ;
Nochetto, RH ;
Verdi, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :974-999