A Perspective on superconductivity in curved 3D nanoarchitectures

被引:15
|
作者
Fomin, Vladimir M. [1 ,2 ,3 ]
Dobrovolskiy, Oleksandr V. [4 ]
机构
[1] Leibniz IFW Dresden, Inst Integrat Nanosci, Helmholtzstr 20, D-01069 Dresden, Germany
[2] Moldova State Univ, Dept Theoret Phys, Lab Phys & Engn Nanomat, Str A Mateevici 60, MD-2009 Kishinev, Moldova
[3] Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed, Kashirskoe Shosse 31, Moscow 115409, Russia
[4] Univ Vienna, Fac Phys, Superconduct & Spintron Lab, Nanomagnetism & Magnon, Wahringer Str 17, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
TRANSITION-TEMPERATURE; FLUX QUANTA; VORTICES; MOTION; FIELD; SPIN; NANOSTRUCTURES; MAGNETIZATION; SIMULATIONS; MICROSCOPY;
D O I
10.1063/5.0085095
中图分类号
O59 [应用物理学];
学科分类号
摘要
In recent years, superconductivity and vortex matter in curved 3D nanoarchitectures have turned into a vibrant research avenue because of the rich physics of the emerging geometry- and topology-induced phenomena and their prospects for applications in (electro)magnetic field sensing and information technology. While this research domain is still in its infancy, numerous theoretical predictions await their experimental examination. In this Perspective, after a brief introduction to the topical area, we outline experimental techniques capable of fabrication of curved 3D nanostructures and review selected own results on the intertwined dynamics of Meissner currents, Abrikosov vortices, and slips of the phase of the superconducting order parameter therein. We share our vision regarding prospect directions and current challenges in this research domain, arguing that curved 3D nanoarchitectures open up a direction in superconductors' research and possess great potential for magnetic field sensing, bolometry, and fluxonic devices. (C) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures
    Makarov, Denys
    Volkov, Oleksii M.
    Kakay, Attila
    Pylypovskyi, Oleksandr V.
    Budinska, Barbora
    Dobrovolskiy, Oleksandr V.
    ADVANCED MATERIALS, 2022, 34 (03)
  • [2] Electrochemically Responsive 3D Nanoarchitectures
    Hamidinejad, Mahdi
    Wang, Heng
    Sanders, Kate A.
    De Volder, Michael
    ADVANCED MATERIALS, 2024, 36 (02)
  • [3] Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures
    Zhang, ZP
    Shao, XQ
    Yu, HD
    Wang, YB
    Han, MY
    CHEMISTRY OF MATERIALS, 2005, 17 (02) : 332 - 336
  • [4] Hydrothennal synthesis of 3D α-MnS flowerlike nanoarchitectures
    Tao, Feng
    Wang, Zhijun
    Yao, Lianzeng
    Cai, Weili
    Li, Xiaoguang
    MATERIALS LETTERS, 2007, 61 (28) : 4973 - 4975
  • [5] 3D plasmonic nanoarchitectures for extreme light concentration
    Arnob, Md Masud Parvez
    Zhao, Fusheng
    Shih, Wei-Chuan
    PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XV, 2017, 10346
  • [6] Multifunctional 3D nanoarchitectures for energy storage and conversion
    Rolison, Debra R.
    Long, Jeffrey W.
    Lytle, Justin C.
    Fischer, Anne E.
    Rhodes, Christopher P.
    McEvoy, Todd M.
    Bourga, Megan E.
    Lubers, Alia M.
    CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) : 226 - 252
  • [7] Hydrothermal synthesis of 3D α-MnS flowerlike nanoarchitectures
    Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
    Mater Lett, 28 (4973-4975):
  • [9] Fabrication of 2D and 3D dendritic nanoarchitectures of US
    Gu Li
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2008, 18 (04) : 904 - 907
  • [10] Magnetism and superconductivity in nanoarchitectures
    Mattis, D. C.
    PHYSICA B-CONDENSED MATTER, 2006, 384 (1-2) : 239 - 243