Large Deviations and Moderate Deviations for Kernel Density Estimators of Directional Data

被引:1
作者
Gao, Fu Qing [1 ]
Li, Li Na [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
kernel density estimator; directional data; moderate deviations; large deviations; UNIFORM CONSISTENCY; RATES;
D O I
10.1007/s10114-010-7205-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(n) be the non-parametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere Sd-1. It is proved that if the kernel function is a function with bounded variation and the density function f of the random variables is continuous, then large deviation principle and moderate deviation principle for {sup(x is an element of Sd-1)vertical bar f(n)(x) - E(f(n)(x))vertical bar, n >= 1} hold.
引用
收藏
页码:937 / 950
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 1990, GEN MULTIVARIATE ANA
[2]   KERNEL ESTIMATORS OF DENSITY-FUNCTION OF DIRECTIONAL-DATA [J].
BAI, ZD ;
RAO, CR ;
ZHAO, LC .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 27 (01) :24-39
[3]  
Dembo A., 1998, LARGE DEVIATIONS TEC
[4]   An empirical process approach to the uniform consistency of kernel-type function estimators [J].
Einmahl, U ;
Mason, DM .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (01) :1-37
[5]   LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS [J].
ELLIS, RS .
ANNALS OF PROBABILITY, 1984, 12 (01) :1-12
[6]   Moderate deviations and large deviations for kernel density estimators [J].
Gao, FQ .
JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) :401-418
[7]   Moderate deviations and law of the iterated logarithm in L1(Rd) for kernel density estimators [J].
Gao, Fuqing .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (03) :452-473
[8]   Rates of strong uniform consistency for multivariate kernel density estimators [J].
Giné, E ;
Guillou, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (06) :907-921
[9]   On consistency of kernel density estimators for randomly censored data:: Rates holding uniformly over adaptive intervals [J].
Giné, E ;
Guillou, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (04) :503-522
[10]   KERNEL DENSITY-ESTIMATION WITH SPHERICAL DATA [J].
HALL, P ;
WATSON, GS ;
CABRERA, J .
BIOMETRIKA, 1987, 74 (04) :751-762