Asymptotic expansions for the location invariant moment-type estimator

被引:1
作者
Peng Zuoxiang [2 ]
Liu Miaomiao [2 ]
Nadarajah, Saralees [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M60 1QD, Lancs, England
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Asymptotic expansion; Asymptotic normality; Consistency; Extreme value index; EXTREME-VALUE THEORY; VALUE-AT-RISK; INFERENCE; INDEX;
D O I
10.1016/j.matcom.2009.12.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, based on moment-type and location invariant Hill estimators, a new kind of location invariant moment-type extreme value index estimator is proposed. The weak and strong consistency of the estimator are discussed. The asymptotic expansion of the estimator and its distribution are also considered under second order regularly varying conditions. The asymptotic normality is employed to construct the confidence interval. Monte Carlo simulations are performed to compare the Hill estimator and the moment estimator in terms of mean squared error. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:982 / 998
页数:17
相关论文
共 19 条
  • [1] ALVES MIF, 2001, EXTREMES, V4, P199
  • [2] de Haan L., 1994, EXTREME VALUE THEORY, V1, P93
  • [3] ON THE ESTIMATION OF THE EXTREME-VALUE INDEX AND LARGE QUANTILE ESTIMATION
    DEKKERS, ALM
    DEHAAN, L
    [J]. ANNALS OF STATISTICS, 1989, 17 (04) : 1795 - 1832
  • [4] High volatility, thick tails and extreme value theory in value-at-risk estimation
    Gençay, R
    Selçuk, F
    Ulugülyagci, A
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02) : 337 - 356
  • [5] Gençay R, 2004, INT J FORECASTING, V20, P287, DOI [10.1016/j.ijforecast.2003.09.005, 10.1016/j.ijforecast.2004.09.005]
  • [6] SIMPLE GENERAL APPROACH TO INFERENCE ABOUT TAIL OF A DISTRIBUTION
    HILL, BM
    [J]. ANNALS OF STATISTICS, 1975, 3 (05) : 1163 - 1174
  • [7] Ling CX, 2007, THEOR PROBAB MATH ST, V76, P22
  • [8] LING CX, 2007, THEORY PROBABILITY M, V77, P167
  • [9] McNeil A.J., 1999, Internal Modeling CAD II, Risk Books, P93
  • [10] McNeil A. J., 2000, J EMPIR FINANC, V7, P271, DOI [10.1016/S0927-5398(00)00012-8, DOI 10.1016/S0927-5398(00)00012-8]