The accuracy of the modified ghost fluid method for gas-gas Riemann problem

被引:21
作者
Liu, T. G.
Khoo, B. C. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
[2] Inst High Performance Comp, Singapore 117528, Singapore
关键词
ghost fluid method; modified ghost fluid method; GFM Riemann problem; approximate Riemann problem solver;
D O I
10.1016/j.apnum.2006.07.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Previous numerical tests have shown that the modified ghost fluid method (MGFM) [T.G. Liu, B.C. Khoo, K.S. Yeo, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys. 190 (2003) 651-681; T.G. Liu, B.C. Khoo, C.W. Wang, The ghost fluid method for compressible gas-water simulation, J. Comput. Phys. 204 (2005) 193-221) is robust and performs much better than the original GFM [R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys. 152 (1999) 457-492]. In this work, a rigorous analysis is carriedout on the accuracy of the MGFM when applied to the gas-gas Riemann problem. It is shown that at the material interface the MGFM solution approximates the exact solution to at least second-order accuracy in the sense of comparing to the exact solution of a Riemann problem. On the other hand, the results by the original GFM have generally no-order accuracy if the interface is not in normal motion. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:721 / 733
页数:13
相关论文
共 19 条
[1]   How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach [J].
Abgrall, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 125 (01) :150-160
[2]   Computations of compressible multifluids [J].
Abgrall, R ;
Karni, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :594-623
[3]   A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: Systems of equations [J].
Aslam, TD .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :37-62
[4]   A level-set algorithm for tracking discontinuities in hyperbolic conservation laws I. Scalar equations [J].
Aslam, TD .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) :413-438
[5]  
Fedkiw RP, 1999, J COMPUT PHYS, V152, P457, DOI 10.1006/jcph.1999.6136
[6]   Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method [J].
Fedkiw, RP .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (01) :200-224
[7]   Conservative front tracking and level set algorithms [J].
Glimm, J ;
Li, XL ;
Liu, YJ ;
Zhao, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14198-14201
[8]   MULTICOMPONENT FLOW CALCULATIONS BY A CONSISTENT PRIMITIVE ALGORITHM [J].
KARNI, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (01) :31-43
[9]  
Liu TG, 2006, COMMUN COMPUT PHYS, V1, P898
[10]   Ghost fluid method for strong shock impacting on material interface [J].
Liu, TG ;
Khoo, BC ;
Yeo, KS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :651-681