Simultaneous multislice imaging for native myocardial T1 mapping: Improved spatial coverage in a single breath-hold

被引:35
|
作者
Weingaertner, Sebastian [1 ,2 ,3 ]
Moeller, Steen [2 ]
Schmitter, Sebastian [2 ,4 ]
Auerbach, Edward [2 ]
Kellman, Peter [5 ]
Shenoy, Chetan [6 ]
Akcakaya, Mehmet [1 ,2 ]
机构
[1] Univ Minnesota, Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[3] Heidelberg Univ, Univ Med Ctr Mannheim, Comp Assisted Clin Med, Mannheim, Germany
[4] Phys Tech Bundesanstalt, Med Phys & Metrol Informat Technol, Berlin, Germany
[5] NHLBI, NIH, Bldg 10, Bethesda, MD 20892 USA
[6] Univ Minnesota, Dept Med, Div Cardiovasc, Box 736 UMHC, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
myocardial T-1 mapping; simultaneous multislice imaging; multiband; saturation recovery; SAPPHIRE; SPOILED GRADIENT-ECHO; INVERSION-RECOVERY; MOTION CORRECTION; TISSUE CHARACTERIZATION; T1; QUANTIFICATION; RESOLUTION; ACCURACY; HEART; MOLLI;
D O I
10.1002/mrm.26770
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop a saturation recovery myocardial T-1 mapping method for the simultaneous multislice acquisition of three slices. MethodsSaturation pulse-prepared heart rate independent inversion recovery (SAPPHIRE) T-1 mapping was implemented with simultaneous multislice imaging using FLASH readouts for faster coverage of the myocardium. Controlled aliasing in parallel imaging (CAIPI) was used to achieve minimal noise amplification in three slices. Multiband reconstruction was performed using three linear reconstruction methods: Slice- and in-plane GRAPPA, CG-SENSE, and Tikhonov-regularized CG-SENSE. Accuracy, spatial variability, and interslice leakage were compared with single-band T-1 mapping in a phantom and in six healthy subjects. ResultsMultiband phantom T-1 times showed good agreement with single-band T-1 mapping for all three reconstruction methods (normalized root mean square error <1.0%). The increase in spatial variability compared with single-band imaging was lowest for GRAPPA (1.29-fold), with higher penalties for Tikhonov-regularized CG-SENSE (1.47-fold) and CG-SENSE (1.52-fold). In vivo multiband T-1 times showed no significant difference compared with single-band (T-1 timeintersegmental variability: single-band, 1580 +/- 119 ms; GRAPPA, 1572 +/- 145 ms; CG-SENSE, 1579 +/- 159 ms; Tikhonov, 1586 +/- 150 ms [analysis of variance; P=0.86]). Interslice leakage was smallest for GRAPPA (5.4%) and higher for CG-SENSE (6.2%) and Tikhonov-regularized CG-SENSE (7.9%). ConclusionMultiband accelerated myocardial T-1 mapping demonstrated the potential for single-breath-hold T-1 quantification in 16 American Heart Association segments over three slices. A 1.2- to 1.4-fold higher in vivo spatial variability was observed, where GRAPPA-based reconstruction showed the highest homogeneity and the least interslice leakage. Magn Reson Med 78:462-471, 2017. (c) 2017 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:462 / 471
页数:10
相关论文
共 50 条
  • [31] Comparison of different cardiovascular magnetic resonance sequences for native myocardial T1 mapping at 3T
    Teixeira, Tiago
    Hafyane, Tarik
    Stikov, Nikola
    Akdeniz, Cansu
    Greiser, Andreas
    Friedrich, Matthias G.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18 : 1 - 12
  • [32] Free-breathing simultaneous myocardial T1and T2mapping with whole left ventricle coverage
    Guo, Rui
    Cai, Xiaoying
    Kucukseymen, Selcuk
    Rodriguez, Jennifer
    Paskavitz, Amanda
    Pierce, Patrick
    Goddu, Beth
    Thompson, Richard B.
    Nezafat, Reza
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (03) : 1308 - 1321
  • [33] Native T1 Mapping for Myocardial Infarction Time to Throw Out the Gadolinium?
    Nezafat, Reza
    JACC-CARDIOVASCULAR IMAGING, 2015, 8 (09) : 1031 - 1033
  • [34] 3D SASHA myocardial T1 mapping with high accuracy and improved precision
    Nordio, Giovanna
    Bustin, Aurelien
    Henningsson, Markus
    Rashid, Imran
    Chiribiri, Amedeo
    Ismail, Tevfik
    Odille, Freddy
    Prieto, Claudia
    Michael Botnar, Rene
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2019, 32 (02) : 281 - 289
  • [35] Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks
    Fahmy, Ahmed S.
    El-Rewaidy, Hossam
    Nezafat, Maryam
    Nakamori, Shiro
    Nezafat, Reza
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2019, 21 (1)
  • [36] K-t GRAPPA Accelerated Phase Contrast MRI: Improved Assessment of Blood Flow and 3-Directional Myocardial Motion During Breath-hold
    Bauer, Simon
    Markl, Michael
    Foell, Daniela
    Russe, Maximilian
    Stankovic, Zoran
    Jung, Bernd
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (05) : 1054 - 1062
  • [37] Native myocardial T1 mapping in pulmonary hypertension: correlations with cardiac function and hemodynamics
    Reiter, Ursula
    Reiter, Gert
    Kovacs, Gabor
    Adelsmayr, Gabriel
    Greiser, Andreas
    Olschewski, Horst
    Fuchsjaeger, Michael
    EUROPEAN RADIOLOGY, 2017, 27 (01) : 157 - 166
  • [38] Comparison of myocardial T1 mapping during breath-holding and free-breathing
    Oka, Hideharu
    Nakau, Kouichi
    Nakagawa, Sadahiro
    Kobayashi, Yuki
    Imanishi, Rina
    Iwata, Kunihiro
    Azuma, Hiroshi
    CARDIOLOGY IN THE YOUNG, 2022, 32 (06) : 925 - 929
  • [39] Improved accuracy and precision with three-parameter simultaneous myocardial T1 and T2 mapping using multiparametric SASHA
    Chow, Kelvin
    Hayes, Genevieve
    Flewitt, Jacqueline A.
    Feuchter, Patricia
    Lydell, Carmen
    Howarth, Andrew
    Pagano, Joseph J.
    Thompson, Richard B.
    Kellman, Peter
    White, James A.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (06) : 2775 - 2791
  • [40] Imaging sequence for joint myocardial T1 mapping and fat/water separation
    Nezafat, Maryam
    Nakamori, Shiro
    Basha, Tamer A.
    Fahmy, Ahmed S.
    Hauser, Thomas
    Botnar, Rene M.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (01) : 486 - 494