Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy

被引:12
|
作者
Jacobson, David R. [1 ,2 ]
Perkins, Thomas T. [1 ,2 ,3 ]
机构
[1] NIST, JILA, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
关键词
membrane proteins; atomic force microscopy; energy landscape; single-molecule force spectroscopy; protein folding;
D O I
10.1073/pnas.2020083118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (Delta Delta G). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 mu s time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure Delta Delta G, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR's G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule-derived Delta Delta G for mutant L223A (-2.3 +/- 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our Delta Delta G for mutant V217A was 2.2-fold larger (-2.4 +/- 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217 and a natively bound squalene lipid, highlighting the contribution of membrane protein-lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining Delta Delta G for a fully folded membrane protein embedded in its native bilayer.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy
    Kedrov, Alexej
    Janovjak, Harald
    Sapra, K. Tanuj
    Mueller, Daniel J.
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2007, 36 : 233 - 260
  • [22] Estimating the Molecular Weight of Polyelectrolyte by Single-molecule Force Spectroscopy
    Wang, Hai-long
    Shan, Yi-xuan
    Bao, Yu
    Cui, Shu-xun
    ACTA POLYMERICA SINICA, 2022, 53 (11): : 1358 - 1364
  • [23] Photothermal cantilever actuation for fast single-molecule force spectroscopy
    Stahl, Stefan W.
    Puchner, Elias M.
    Gaub, Hermann E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (07)
  • [24] Nanoapertures for AFM-based single-molecule force spectroscopy
    Heucke, Stephan F.
    Puchner, Elias M.
    Stahl, Stefan W.
    Holleitner, Alexander W.
    Gaub, Hermann E.
    Tinnefeld, Philip
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2013, 10 (5-7) : 607 - 619
  • [25] Analysis of DNA interactions using single-molecule force spectroscopy
    Ritzefeld, Markus
    Walhorn, Volker
    Anselmetti, Dario
    Sewald, Norbert
    AMINO ACIDS, 2013, 44 (06) : 1457 - 1475
  • [26] Analysis of DNA interactions using single-molecule force spectroscopy
    Markus Ritzefeld
    Volker Walhorn
    Dario Anselmetti
    Norbert Sewald
    Amino Acids, 2013, 44 : 1457 - 1475
  • [27] Subnanometre enzyme mechanics probed by single-molecule force spectroscopy
    Pelz, Benjamin
    Zoldak, Gabriel
    Zeller, Fabian
    Zacharias, Martin
    Rief, Matthias
    NATURE COMMUNICATIONS, 2016, 7
  • [28] A functional single-molecule binding assay via force spectroscopy
    Cao, Yi
    Balamurali, M. M.
    Sharma, Deepak
    Li, Hongbin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) : 15677 - 15681
  • [29] Methods and estimations of uncertainties in single-molecule dynamic force spectroscopy
    Bjornham, Oscar
    Schedin, Staffan
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2009, 38 (07): : 911 - 922
  • [30] Recent Progress in Single-Molecule Force Spectroscopy Study of Polymers
    Zhang Wei
    Kou Xiao-Long
    Zhang Wen-Ke
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2012, 33 (05): : 861 - 875