Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite)

被引:67
作者
Xu, Chong [1 ,2 ]
Xu, Shanglong [1 ,2 ]
Eticha, Robera Daba [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
关键词
PCM; Pulsating flow; Microchannel; Thermal performance; Square wave; PHASE-CHANGE MATERIAL; LAMINAR-FLOW; NANOFLUID FLOW; TRANSFER ENHANCEMENT; FLUID-FLOW; MANAGEMENT; MIXTURES; CHANNEL; STORAGE; SYSTEM;
D O I
10.1016/j.enconman.2021.114071
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel microchannel heat sink, which includes a heat exchange cavity with pyramid pin-fins and a PCM (phase change material) cavity with square pin-fins, is designed. The CNT (carbon nanotube) is added to paraffin to enhance thermal conductivity. GOPs (Graphene oxide particles) nanofluids pulsating flow driven by square wave are used to improve the thermal performance. The PCM cavity is filled with CNT/paraffin composite material to absorb and store the heat on the heating surfaces and to transfer the heat through the exchange chamber to achieve cooling. The results show that the microchannel heat sink?s thermal performance can be significantly improved using PCM composite and GOPs nanofluids. Under steady flow conditions, the total thermal resistance decreases significantly when the proportion of carbon nanotubes is approximately 20%; and, the maximum increase of Nusselt number reaches 34.9%. The thermal performance reaches the maximum enhancement under pulsating flow as the pulsating frequency is around 6 Hz. The total thermal resistance decreases by 19%, and the Nusselt number increases by 15.2%. The enhanced effects of pulsating flow and PCM composite on thermal performance are also affected by pump power and heating load. The higher heating power plays an active role in the enhancement effect, whereas the higher pump power has the opposite effect.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel [J].
Akdag, Unal ;
Akcay, Selma ;
Demiral, Dogan .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 59 :17-23
[2]   Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison [J].
Ali, Hafiz Muhammad ;
Arshad, Adeel ;
Jabbal, Mark ;
Verdin, P. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :1199-1204
[3]   lEffect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids [J].
Ali, Hafiz Muhammad ;
Arshad, Waqas .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 106 :465-472
[4]   Vortex-induced vibration of a cylinder in pulsating nanofluid flow [J].
Amini, Y. ;
Akhavan, S. ;
Izadpanah, E. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 140 (05) :2143-2158
[5]   Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink [J].
Arani, Ali Akbar Abbasian ;
Akbari, Omid Ali ;
Safaei, Mohammad Reza ;
Marzban, Ali ;
Airashed, Abdullah A. A. A. ;
Ahmadi, Gholam Reza ;
Truong Khang Nguyen .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 :780-795
[6]   Investigation of finned heat sink performance with nano enhanced phase change material (NePCM) [J].
Bayat, Milad ;
Faridzadeh, Mohammad Reza ;
Toghraie, Davood .
THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 5 :50-59
[7]   Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems [J].
Bo, H ;
Gustafsson, EM ;
Setterwall, F .
ENERGY, 1999, 24 (12) :1015-1028
[8]   PCM based heat sinks of paraffin/nanoplatelet graphite composite for thermal management of IGBT [J].
Chang, Tien-Chan ;
Lee, Shyong ;
Fuh, Yiin-Kuen ;
Peng, Ya-Chi ;
Lin, Zhi-Yu .
APPLIED THERMAL ENGINEERING, 2017, 112 :1129-1136
[9]   Analysis of heat transfer in simultaneously developing pulsating laminar flow in a pipe with constant wall temperature [J].
Chattopadhyay, H ;
Durst, F ;
Ray, S .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (04) :475-481
[10]   Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions [J].
Drummond, Kevin P. ;
Back, Doosan ;
Sinanis, Michael D. ;
Janes, David B. ;
Peroulis, Dimitrios ;
Weibel, Justin A. ;
Garimella, Suresh V. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 :1289-1301