Three-dimensional photonic topological insulator without spin-orbit coupling

被引:36
作者
Kim, Minkyung [1 ]
Wang, Zihao [2 ]
Yang, Yihao [2 ,3 ]
Teo, Hau Tian [2 ]
Rho, Junsuk [1 ,4 ,5 ]
Zhang, Baile [2 ,6 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[3] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 310027, Peoples R China
[4] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 37673, South Korea
[5] POSCO POSTECH RIST Convergence Res Ctr Flat Opt, Pohang 37673, South Korea
[6] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 639798, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
SPONTANEOUS-EMISSION; CRYSTALLINE INSULATOR; SURFACE;
D O I
10.1038/s41467-022-30909-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin-orbit coupling, a fundamental mechanism underlying topological insulators, has been introduced to construct the latter's photonic analogs, or photonic topological insulators (PTIs). However, the intrinsic lack of electronic spin in photonic systems leads to various imperfections in emulating the behaviors of topological insulators. For example, in the recently demonstrated three-dimensional (3D) PTI, the topological surface states emerge, not on the surface of a single crystal as in a 3D topological insulator, but along an internal domain wall between two PTIs. Here, by fully abolishing spin-orbit coupling, we design and demonstrate a 3D PTI whose topological surface states are self-guided on its surface, without extra confinement by another PTI or any other cladding. The topological phase follows the original Fu's model for the topological crystalline insulator without spin-orbit coupling. Unlike conventional linear Dirac cones, a unique quadratic dispersion of topological surface states is directly observed with microwave measurement. Our work opens routes to the topological manipulation of photons at the outer surface of photonic bandgap materials.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Crystallographic splitting theorem for band representations and fragile topological photonic crystals [J].
Alexandradinata, A. ;
Holler, J. ;
Wang, Chong ;
Cheng, Hengbin ;
Lu, Ling .
PHYSICAL REVIEW B, 2020, 102 (11)
[2]   Berry-phase description of topological crystalline insulators [J].
Alexandradinata, A. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2016, 93 (20)
[3]   A topological quantum optics interface [J].
Barik, Sabyasachi ;
Karasahin, Aziz ;
Flower, Christopher ;
Cai, Tao ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Hafezi, Mohammad ;
Waks, Edo .
SCIENCE, 2018, 359 (6376) :666-668
[4]   Two-dimensionally confined topological edge states in photonic crystals [J].
Barik, Sabyasachi ;
Miyake, Hirokazu ;
DeGottardi, Wade ;
Waks, Edo ;
Hafezi, Mohammad .
NEW JOURNAL OF PHYSICS, 2016, 18
[5]   Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers [J].
Burckel, D. Bruce ;
Wendt, Joel R. ;
Ten Eyck, Gregory A. ;
Ginn, James C. ;
Ellis, A. Robert ;
Brener, Igal ;
Sinclair, Michael B. .
ADVANCED MATERIALS, 2010, 22 (44) :5053-+
[6]  
Dziawa P, 2012, NAT MATER, V11, P1023, DOI [10.1038/NMAT3449, 10.1038/nmat3449]
[7]   Topological Crystalline Insulators [J].
Fu, Liang .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[8]   Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances [J].
Fukui, T ;
Hatsugai, Y ;
Suzuki, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) :1674-1677
[9]   Spoof Plasmonics: From Metamaterial Concept to Topological Description [J].
Gao, Zhen ;
Wu, Lin ;
Gao, Fei ;
Luo, Yu ;
Zhang, Baile .
ADVANCED MATERIALS, 2018, 30 (31)
[10]   Topological phonon-polariton funneling in midinfrared metasurfaces [J].
Guddala, S. ;
Komissarenko, F. ;
Kiriushechkina, S. ;
Vakulenko, A. ;
Li, M. ;
Menon, V. M. ;
Alu, A. ;
Khanikaev, A. B. .
SCIENCE, 2021, 374 (6564) :225-+