Silk Fibroin-Based Biomaterials for Hemostatic Applications

被引:33
|
作者
Sultan, Md Tipu [1 ]
Hong, Heesun [1 ]
Lee, Ok Joo [1 ]
Ajiteru, Olatunji [1 ]
Lee, Young Jin [1 ]
Lee, Ji Seung [1 ]
Lee, Hanna [1 ]
Kim, Soon Hee [1 ]
Park, Chan Hum [1 ,2 ]
机构
[1] Hallym Univ, Nanobio Regenerat Med Inst NBRM, Chunchon 24252, South Korea
[2] Chuncheon Sacred Heart Hosp, Dept Otorhinolaryngol Head & Neck Surg, Chunchon 24253, South Korea
基金
新加坡国家研究基金会;
关键词
silk fibroin; hemostatic agent; powder; sponge; sealant; medical application; IN-VITRO; CARBOXYMETHYL CHITOSAN; SODIUM ALGINATE; TISSUE FACTOR; BLOOD-LOSS; SPONGE; MICROSPHERES; SCAFFOLDS; COLLAGEN; INJURY;
D O I
10.3390/biom12050660
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hemostasis plays an essential role in all surgical procedures. Uncontrolled hemorrhage is the primary cause of death during surgeries, and effective blood loss control can significantly reduce mortality. For modern surgeons to select the right agent at the right time, they must understand the mechanisms of action, the effectiveness, and the possible adverse effects of each agent. Over the past decade, various hemostatic agents have grown intensely. These agents vary from absorbable topical hemostats, including collagen, gelatins, microfibrillar, and regenerated oxidized cellulose, to biologically active topical hemostats such as thrombin, biological adhesives, and other combined agents. Commercially available products have since expanded to include topical hemostats, surgical sealants, and adhesives. Silk is a natural protein consisting of fibroin and sericin. Silk fibroin (SF), derived from silkworm Bombyx mori, is a fibrous protein that has been used mostly in fashion textiles and surgical sutures. Additionally, SF has been widely applied as a potential biomaterial in several biomedical and biotechnological fields. Furthermore, SF has been employed as a hemostatic agent in several studies. In this review, we summarize the several morphologic forms of SF and the latest technological advances on the use of SF-based hemostatic agents.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review
    Thang Phan Nguyen
    Quang Vinh Nguyen
    Van-Huy Nguyen
    Thu-Ha Le
    Vu Quynh Nga Huynh
    Vo, Dai-Viet N.
    Quang Thang Trinh
    Kim, Soo Young
    Quyet Van Le
    POLYMERS, 2019, 11 (12)
  • [2] Silk Fibroin-Based Biomaterials for Tissue Engineering Applications
    Li, Guangfei
    Sun, Shan
    MOLECULES, 2022, 27 (09):
  • [3] Studies on Functional Silk Fibroin-Based Biomaterials
    Hashimoto, Tomoko
    SEN-I GAKKAISHI, 2014, 70 (07) : 219 - 222
  • [4] Functionalization of silk fibroin-based biomaterials for tissue engineering
    Kambe, Yusuke
    POLYMER JOURNAL, 2021, 53 (12) : 1345 - 1351
  • [5] Functionalization of silk fibroin-based biomaterials for tissue engineering
    Yusuke Kambe
    Polymer Journal, 2021, 53 : 1345 - 1351
  • [6] Silk fibroin-based biomaterials for disc tissue engineering
    Lin, Maoqiang
    Hu, Yicun
    An, Haiying
    Guo, Taowen
    Gao, Yanbing
    Peng, Kaichen
    Zhao, Meiling
    Zhang, Xiaobo
    Zhou, Haiyu
    BIOMATERIALS SCIENCE, 2023, 11 (03) : 749 - 776
  • [7] Silk fibroin-based biomaterials for disc tissue engineering
    Lin, Maoqiang
    Hu, Yicun
    An, Haiying
    Guo, Taowen
    Gao, Yanbing
    Peng, Kaichen
    Zhao, Meiling
    Zhang, Xiaobo
    Zhou, Haiyu
    Biomaterials Science, 2022, 11 (03) : 749 - 776
  • [8] Application of silk fibroin-based biomaterials for drug delivery
    Luo Y.
    Dai M.
    Li M.
    Yu Y.
    Wang J.
    Fangzhi Xuebao/Journal of Textile Research, 2023, 44 (09): : 213 - 222
  • [9] Silk fibroin-based biomaterials for cartilage/osteochondral repair
    Zhou, Ziyang
    Cui, Jin
    Wu, Shunli
    Geng, Zhen
    Su, Jiacan
    THERANOSTICS, 2022, 12 (11): : 5103 - 5124
  • [10] Silk fibroin-based biomaterials for musculoskeletal tissue engineering
    Ma, Dakun
    Wang, Yansong
    Dai, Wenjie
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 89 : 456 - 469