Laves phase crystal analysis (LaCA): Atomistic identification of lattice defects in C14 and C15 topologically close-packed phases

被引:8
作者
Xie, Zhuocheng [1 ]
Chauraud, Dimitri [2 ]
Bitzek, Erik [2 ]
Korte-Kerzel, Sandra [1 ]
Guenole, Julien [1 ,3 ,4 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys Met & Mat Phys, D-52056 Aachen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Gen Mat Properties 1, Dept Mat Sci & Engn, D-91058 Erlangen, Germany
[3] Univ Lorraine, LEM3, Arts & Metiers ParisTech, CNRS, F-57070 Metz, France
[4] Univ Lorraine, Labex Damas, F-57070 Metz, France
基金
欧洲研究理事会;
关键词
MOLECULAR-DYNAMICS; QUADRATIC-FORMS; DEFORMATION; TRANSFORMATIONS; DISLOCATIONS; SLIP;
D O I
10.1557/s43578-021-00237-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The identification of defects in crystal structures is crucial for the analysis of atomistic simulations. Many methods to characterize defects that are based on the classification of local atomic arrangement are available for simple crystalline structures. However, there is currently no method to identify both, the crystal structures and internal defects of topologically close-packed (TCP) phases such as Laves phases. We propose a new method, Laves phase crystal analysis (LaCA), to characterize the atomic arrangement in Laves crystals by interweaving existing structural analysis algorithms. The new method can identify the polytypes C14 and C15 of Laves phases, typical crystallographic defects in these phases, and common deformation mechanisms such as synchroshear and non-basal dislocations. Defects in the C36 Laves phase are detectable through deviations from the periodic arrangement of the C14 and C15 structures that make up this phase. LaCA is robust and extendable to other TCP phases.
引用
收藏
页码:2010 / 2024
页数:15
相关论文
共 54 条
  • [1] Bazant M. Z., 2005, HDB MAT MODELING
  • [2] Structural relaxation made simple
    Bitzek, Erik
    Koskinen, Pekka
    Gaehler, Franz
    Moseler, Michael
    Gumbsch, Peter
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (17)
  • [3] Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x ≅ 0.08), CuMg2, and Cu2Mg
    Braga, M. H.
    Ferreira, J. J. A.
    Siewenie, J.
    Proffen, Th.
    Vogel, S. C.
    Daemen, L. L.
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (01) : 10 - 19
  • [4] Dislocations in complex materials
    Chisholm, MF
    Kumar, S
    Hazzledine, P
    [J]. SCIENCE, 2005, 307 (5710) : 701 - 703
  • [5] Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
  • [6] COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS .1. DEFINITIONS AND BASIC PRINCIPLES
    FRANK, FC
    KASPER, JS
    [J]. ACTA CRYSTALLOGRAPHICA, 1958, 11 (03): : 184 - 190
  • [7] Exploring the transfer of plasticity across Laves phase interfaces in a dual phase magnesium alloy
    Guenole, Julien
    Zubair, Muhammad
    Roy, Swagata
    Xie, Zhuocheng
    Lipinska-Chwalek, Marta
    Sandloebes-Haut, Stefanie
    Korte-Kerzel, Sandra
    [J]. MATERIALS & DESIGN, 2021, 202
  • [8] Assessment and optimization of the fast inertial relaxation engine (FIRE) for energy minimization in atomistic simulations and its implementation in LAMMPS
    Guenole, Julien
    Noehring, Wolfram G.
    Vaid, Aviral
    Houlle, Frederic
    Xie, Zhuocheng
    Prakash, Aruna
    Bitzek, Erik
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 175
  • [9] Basal slip in Laves phases: The synchroshear dislocation
    Guenole, Julien
    Mouhib, Fatim-Zahra
    Huber, Liam
    Grabowski, Blazej
    Korte-Kerzel, Sandra
    [J]. SCRIPTA MATERIALIA, 2019, 166 : 134 - 138
  • [10] Crystal-Structure Analysis with Moments of the Density-of-States: Application to Intermetallic Topologically Close-Packed Phases
    Hammerschmidt, Thomas
    Ladines, Alvin Noe
    Kossmann, Joerg
    Drautz, Ralf
    [J]. CRYSTALS, 2016, 6 (02)