Thermochemical two-step water splitting cycle using perovskite oxides based on LaSrMnO3 redox system for solar H2 production

被引:28
作者
Gokon, Nobuyuki [1 ,2 ,3 ]
Hara, Kazuki [2 ,3 ]
Sugiyama, Yuta [2 ,3 ]
Bellan, Selvan [3 ,4 ]
Kodama, Tatsuya [1 ,2 ,3 ]
Hyun-seok, Cho [1 ,2 ]
机构
[1] Niigata Univ, Fac Engn, Dept Chem & Chem Engn, 8050 Ikarashi 2 Nocho, Niigata 9502181, Japan
[2] Niigata Univ, Pacific Rim Solar Fuels Res Ctr, 8050 Ikarashi 2 Nocho, Niigata 9502181, Japan
[3] Niigata Univ, Grad Sch Sci & Technol, 8050 Ikarashi 2 Nocho, Niigata 9502181, Japan
[4] Niigata Univ, Inst Res Promot, Nishi Ku, 8050 Ikarashi 2 Nocho, Niigata 9502181, Japan
关键词
Concentrated solar radiation; Perovskite oxide; Thermochemical cycle; Water splitting; Hydrogen production; HYDROGEN-PRODUCTION; CO; OXYGEN; GENERATION; SR;
D O I
10.1016/j.tca.2019.178374
中图分类号
O414.1 [热力学];
学科分类号
摘要
A thermochemical two-step water-splitting cycle using perovskite oxides based on LaSrMnAlO3 was examined for hydrogen production from water using concentrated solar radiation. Concurrent Sr and Mn substitutions in La1-xSrxMnxAl1-xO3, Sr and Al substitutions in La1-ySryMn1-yAlyO3, and substitution of Al by Cr in La0.7Sr0.3Mn1-zCrzO3 were examined, and their kinetics, oxygen/hydrogen productivity, and repeatability were compared against LaSrMnAlO3. The impact of the chemical compositions of the perovskite oxides was systematically examined at a thermal reduction temperature of 1350 degrees C and water decomposition temperatures of 1000-1200 degrees C. From the viewpoints of average amounts of oxygen and hydrogen produced and the H-2/O-2 ratios, La0.7Sr0.3Mo0.9Cr0.1O3 and La0.7Sr0.3Mn0.8Cr0.2O3 provided the most reproducible productions of oxygen and hydrogen in the thermochemical two-step water-splitting cycle.
引用
收藏
页数:13
相关论文
共 34 条
[1]   A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles [J].
Agrafiotis, Christos ;
Roeb, Martin ;
Sattler, Christian .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 42 :254-285
[2]  
[Anonymous], 2016, INORGANIC CRYSTAL ST
[3]  
BELOUS AG, 2003, NEORGANICHESKIE MAT, V0039
[4]   Perovskite La0.6Sr0.4Cr1-xCoxO3-δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature [J].
Bork, A. H. ;
Kubicek, M. ;
Struzik, M. ;
Rupp, J. L. M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (30) :15546-15557
[5]   Tunable Oxygen Vacancy Formation Energetics in the Complex Perovskite Oxide SrxLa1-xMnyAl1-yO3 [J].
Deml, Ann M. ;
Stevanovic, Vladan ;
Holder, Aaron M. ;
Sanders, Michael ;
O'Hayre, Ryan ;
Musgrave, Charles B. .
CHEMISTRY OF MATERIALS, 2014, 26 (22) :6595-6602
[6]   Investigation of Perovskite Structures as Oxygen-Exchange Redox Materials for Hydrogen Production from Thermochemical Two-Step Water-Splitting Cycles [J].
Demont, Antoine ;
Abanades, Stephane ;
Beche, Eric .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (24) :12682-12692
[7]   Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O [J].
Dey, Sunita ;
Naidu, B. S. ;
Rao, C. N. R. .
DALTON TRANSACTIONS, 2016, 45 (06) :2430-2435
[8]   Ln0.5A0.5MnO3 (Ln=Lanthanide, A=Ca, Sr) Perovskites Exhibiting Remarkable Performance in the Thermochemical Generation of CO and H2 from CO2 and H2O [J].
Dey, Sunita ;
Naidu, B. S. ;
Rao, C. N. R. .
CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (19) :7077-7081
[9]   Electronic properties of mixed-valence manganates:: The role of Mn substitutional defects [J].
El-Fadli, Z ;
Metni, MR ;
Sapiña, F ;
Martinez, E ;
Folgado, JV ;
Beltrán, A .
CHEMISTRY OF MATERIALS, 2002, 14 (02) :688-696
[10]  
Ginley D.S., 2011, Fundamentals of materials for energy and environmental sustainability