A first-order image denoising model for staircase reduction

被引:11
作者
Zhu, Wei [1 ]
机构
[1] Univ Alabama, Dept Math, Box 870350, Tuscaloosa, AL 35487 USA
关键词
Image denoising; Augmented Lagrangian method; Variational model; TOTAL VARIATION MINIMIZATION; AUGMENTED LAGRANGIAN METHOD; EULERS ELASTICA; ALGORITHM; SPACE; TV;
D O I
10.1007/s10444-019-09734-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a total variation-based image denoising model that is able to alleviate the well-known staircasing phenomenon possessed by the Rudin-Osher-Fatemi model (Rudin et al., Phys. D 60, 259-268, 30). To minimize this variational model, we employ augmented Lagrangian method (ALM). Convergence analysis is established for the proposed algorithm. Numerical experiments are presented to demonstrate the features of the proposed model and also show the efficiency of the proposed numerical method.
引用
收藏
页码:3217 / 3239
页数:23
相关论文
共 38 条
[1]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[2]  
[Anonymous], FOUND TRENDS MACH LE
[3]  
[Anonymous], 2006, MATH PROBLEMS IMAGE
[4]  
[Anonymous], 2017, MOS SIAM SERIES OPTI
[5]  
[Anonymous], 1989, SIAM STUDIES APPL MA
[6]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[7]   AUGMENTED LAGRANGIAN METHOD FOR AN EULER'S ELASTICA BASED SEGMENTATION MODEL THAT PROMOTES CONVEX CONTOURS [J].
Bae, Egil ;
Tai, Xue-Cheng ;
Zhu, Wei .
INVERSE PROBLEMS AND IMAGING, 2017, 11 (01) :1-23
[8]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[9]   Simultaneous structure and texture image inpainting [J].
Bertalmio, M ;
Vese, L ;
Sapiro, G ;
Osher, S .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (08) :882-889
[10]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526