Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors

被引:72
|
作者
Alì, G
Bini, D
Rionero, S
机构
[1] CNR, Inst Appl Math, I-80131 Naples, Italy
[2] Univ Naples Federico 2, Dipartimento Matemat, I-80126 Naples, Italy
关键词
Euler-Poisson; semiconductors; asymptotic behavior; smooth solutions;
D O I
10.1137/S0036141099355174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.
引用
收藏
页码:572 / 587
页数:16
相关论文
共 50 条
  • [41] Initial layer and incompressible limit for Euler-Poisson equation in nonthermal plasma
    Luo, Tao
    Wang, Shu
    Wang, Yan-Lin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (09) : 1733 - 1751
  • [42] The asymptotic behavior and the quasineutral limit for the bipolar Euler-Poisson system with boundary effects and a vacuum
    Li, Yeping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (04) : 529 - 540
  • [43] BOUNDARY LAYER PROBLEM AND QUASINEUTRAL LIMIT OF COMPRESSIBLE EULER-POISSON SYSTEM
    Wang, Shu
    Liu, Chundi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (06) : 2177 - 2199
  • [44] Pointwise estimates of solutions for the multi-dimensional bipolar Euler-Poisson system
    Wu, Zhigang
    Li, Yeping
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [45] SUBSONIC SOLUTIONS FOR STEADY EULER-POISSON SYSTEM IN TWO-DIMENSIONAL NOZZLES
    Bae, Myoungjean
    Duan, Ben
    Xie, Chunjing
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3455 - 3480
  • [46] Blowup of Solutions to the Compressible Euler-Poisson and Ideal MHD Systems
    Hu, Wenming
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [47] On steady potential models for Euler-Poisson system in general smooth domains
    Chen, Chao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5787 - 5796
  • [48] Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems
    Li, Yachun
    Peng, Yue-Jun
    Zhao, Liang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 185 - 211
  • [49] GLOBAL CONVERGENCE IN INFINITY-ION-MASS LIMITS FOR BIPOLAR EULER-POISSON SYSTEM
    Li, Yachun
    Wang, Shihao
    Zhao, Liang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (01) : 85 - 107
  • [50] Decay estimates of solutions to the bipolar compressible Euler-Poisson system in R3
    Tong, Leilei
    Tan, Zhong
    Xu, Qiuju
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):