Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors

被引:72
|
作者
Alì, G
Bini, D
Rionero, S
机构
[1] CNR, Inst Appl Math, I-80131 Naples, Italy
[2] Univ Naples Federico 2, Dipartimento Matemat, I-80126 Naples, Italy
关键词
Euler-Poisson; semiconductors; asymptotic behavior; smooth solutions;
D O I
10.1137/S0036141099355174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.
引用
收藏
页码:572 / 587
页数:16
相关论文
共 50 条
  • [31] GLOBAL QUASI-NEUTRAL LIMIT FOR A TWO-FLUID EULER-POISSON SYSTEM IN SEVERAL SPACE DIMENSIONS
    Peng, Yue-Jun
    Liu, Cunming
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (02) : 1405 - 1438
  • [32] Global quasi-neutral limit for a two-fluid Euler-Poisson system in one space dimension
    Peng, Yue-Jun
    Liu, Cunming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 330 : 81 - 109
  • [33] Structural Stability of Supersonic Solutions to the Euler-Poisson System
    Bae, Myoungjean
    Duan, Ben
    Xiao, Jingjing
    Xie, Chunjing
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (02) : 679 - 731
  • [34] An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit
    Crispel, Pierre
    Degond, Pierre
    Vignal, Marie-Helene
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) : 208 - 234
  • [35] Global solutions of the Cauchy problem to Euler-Poisson equations of two-carrier types
    Yin, Silu
    Wang, Xianting
    Lu, Yun-guang
    Klingenberg, Christian
    APPLIED MATHEMATICS LETTERS, 2022, 132
  • [36] On approximate solutions to the Euler-Poisson system with boundary layers
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Suzuki, Masahiro
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [37] TRANSONIC SHOCK SOLUTIONS FOR A SYSTEM OF EULER-POISSON EQUATIONS
    Luo, Tao
    Xin, Zhouping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (02) : 419 - 462
  • [38] A note on asymptotic behavior of solutions for the one-dimensional bipolar Euler-Poisson system
    Meng, Peiyuan
    Li, Yeping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 322 - 331
  • [39] Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system
    Zhou, Fang
    Li, Yeping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 480 - 490
  • [40] Initial layers and zero-relaxation limits of multidimensional Euler-Poisson equations
    Hajjej, Mohamed-Lasmer
    Peng, Yue-Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (02) : 182 - 195