We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.
机构:
Nanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R ChinaNanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R China
Liu, Hairong
Luo, Tao
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R ChinaNanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R China
Luo, Tao
Zhong, Hua
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R ChinaNanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R China
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Hong Kong, Hong Kong, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
Chen, Li
Chen, Xiuqing
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
Chen, Xiuqing
Zhang, Chunlei
论文数: 0引用数: 0
h-index: 0
机构:
So Utah Univ, Dept Math, Cedar City, UT 84720 USABeijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China