Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors

被引:72
作者
Alì, G
Bini, D
Rionero, S
机构
[1] CNR, Inst Appl Math, I-80131 Naples, Italy
[2] Univ Naples Federico 2, Dipartimento Matemat, I-80126 Naples, Italy
关键词
Euler-Poisson; semiconductors; asymptotic behavior; smooth solutions;
D O I
10.1137/S0036141099355174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the global existence of smooth solutions of the Cauchy problem for the one-dimensional Euler Poisson model for semiconductors, under the assumption that the initial data are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary solutions converge asymptotically in time to the unperturbed state.
引用
收藏
页码:572 / 587
页数:16
相关论文
共 16 条
[1]  
Ali G, 1996, Z ANGEW MATH MECH, V76, P301
[2]  
ALI G, 1995, ASYMPTOTIC FLUID DYN
[3]  
ANILE AM, 1995, PITMAN RES NOTES MAT, V340, P3
[4]  
[Anonymous], 1984, APPL MATH SCI
[5]  
[Anonymous], 1980, J MATH KYOTO U
[6]   AN INVESTIGATION OF STEADY-STATE VELOCITY OVERSHOOT IN SILICON [J].
BACCARANI, G ;
WORDEMAN, MR .
SOLID-STATE ELECTRONICS, 1985, 28 (04) :407-416
[7]   TRANSPORT EQUATIONS FOR ELECTRONS IN 2- VALLEY SEMICONDUCTORS [J].
BLOTEKJAER, K .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1970, ED17 (01) :38-+
[8]  
Chen GQ, 1998, NUMER MATH SCI COMP, P189
[9]   An existence and uniqueness result for the stationary energy-transport model in semiconductor theory [J].
Degond, P ;
Genieys, S ;
Jungel, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :867-872
[10]   NUMERICAL-METHODS FOR THE HYDRODYNAMIC DEVICE MODEL - SUBSONIC FLOW [J].
GARDNER, CL ;
JEROME, JW ;
ROSE, DJ .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1989, 8 (05) :501-507