Global regularity of n dimensional generalized MHD equations without magnetic diffusion

被引:5
作者
Jiang, Zaihong [1 ]
Cao, Lu [1 ]
Zou, Rong [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Generalized MHD system without magnetic diffusion; Global regularity; LOCAL EXISTENCE; CRITERIA;
D O I
10.1016/j.aml.2019.106065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the global regularity of the n dimensional generalized MHD system without magnetic diffusion in which the velocity dissipation, i.e. viscosity term, is -Lambda(2 alpha)u. We show that the smooth solutions are global in the cases when alpha >= n/2 + 1. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
[2]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[3]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[4]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[5]   A Regularity Criterion for the 3D Generalized MHD Equations [J].
Fan, Jishan ;
Alsaedi, Ahmed ;
Hayat, Tasawar ;
Nakamura, Gen ;
Zhou, Yong .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) :333-340
[6]   Global cauchy problem of 2D generalized MHD equations [J].
Fan, Jishan ;
Malaikah, Honaida ;
Monaquel, Satha ;
Nakamura, Gen ;
Zhou, Yong .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :127-131
[7]   Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) :677-691
[8]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[9]   On two-dimensional magnetohydrodynamic equations with fractional diffusion [J].
Ji, Eunjeong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :55-65
[10]  
Jiang Z.H., 2014, LOCAL EXISTENC UNPUB