Solution semiflow to the compressible Euler equations with damping

被引:1
作者
Tan, Zhong [1 ]
Wu, Zhonger [1 ]
Xie, Minghong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
关键词
Compressible Euler equations; Damping; Solution semiflow; Dissipative solution; NONLINEAR DIFFUSION WAVES; MEASURE-VALUED SOLUTIONS; WEAK-STRONG UNIQUENESS; TIME BEHAVIOR; CONVERGENCE; SYSTEM;
D O I
10.1016/j.jmaa.2021.125313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the 3D isentropic compressible Euler equations with damping in periodic domain. Inspired by the theory of Markov semigroups, we show the existence of solution semiflow which satisfies the standard semigroup property and minimizes the energy (maximizes the energy dissipation) among all dissipative solutions. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 26 条
[11]   On Admissibility Criteria for Weak Solutions of the Euler Equations [J].
De Lellis, Camillo ;
Szekelyhidi, Laszlo, Jr. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :225-260
[12]   CONVERGENCE OF THE VISCOSITY METHOD FOR ISENTROPIC GASDYNAMICS [J].
DIPERNA, RJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :1-30
[13]   Dissipative measure-valued solutions to the compressible Navier-Stokes system [J].
Feireisl, Eduard ;
Gwiazda, Piotr ;
Swierczewska-Gwiazda, Agnieszka ;
Wiedemann, Emil .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (06)
[14]   Weak-strong uniqueness for measure-valued solutions of some compressible fluid models [J].
Gwiazda, Piotr ;
Swierczewska-Gwiazda, Agnieszka ;
Wiedemann, Emil .
NONLINEARITY, 2015, 28 (11) :3873-3890
[15]   CONVERGENCE TO NONLINEAR DIFFUSION WAVES FOR SOLUTIONS OF A SYSTEM OF HYPERBOLIC CONSERVATION-LAWS WITH DAMPING [J].
HSIAO, L ;
LIU, TP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :599-605
[16]   Global existence of solutions for the system of compressible adiabatic flow through porous media [J].
Hsiao, L ;
Serre, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (01) :70-77
[17]  
Hsiao L., 1998, QUASILINEAR HYPERBOL
[18]  
Kroner D, 1996, MATH METHOD APPL SCI, V19, P235, DOI 10.1002/(SICI)1099-1476(199602)19:3<235::AID-MMA772>3.0.CO
[19]  
2-4
[20]   Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping [J].
Nishihara, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :384-395