Some results on finite-time stability of stochastic fractional-order delay differential equations

被引:52
|
作者
Luo, Danfeng [1 ]
Tian, Mengquan [1 ]
Zhu, Quanxin [2 ,3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Peoples R China
[2] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Coll Hunan Prov, Key Lab Control & Optimizat Complex Syst, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
Available online xxxx; Stochastic differential equation; Fractional calculus; Finite-time stability; Laplace transformation; INTEGRODIFFERENTIAL EQUATIONS; EXPONENTIAL STABILITY; EXISTENCE; SYSTEMS; DRIVEN;
D O I
10.1016/j.chaos.2022.111996
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite-time stability of stochastic fractional-order delay differential equations is researched here. Firstly, we derive the equivalent form of the considered system by using the Laplace transformation and its inverse. Subsequently, by defining the maximum weighted norm in Banach space and using the principle of contraction mapping, we prove that the solution of researched system is unique. What's more, by virtue of HenryGronwall delay inequality and interval translation, we derive the criterion of finite-time stability for the system with and without impulses, respectively. Finally, as a verification, examples are provided to expound the correctness of the deduced results.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Some results on finite-time stability of stochastic fractional-order delay differential equations
    Luo, Danfeng
    Tian, Mengquan
    Zhu, Quanxin
    Chaos, Solitons and Fractals, 2022, 158
  • [2] Finite-time stability of linear stochastic fractional-order systems with time delay
    Lassaad Mchiri
    Abdellatif Ben Makhlouf
    Dumitru Baleanu
    Mohamed Rhaima
    Advances in Difference Equations, 2021
  • [3] Finite-time stability of linear stochastic fractional-order systems with time delay
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    Baleanu, Dumitru
    Rhaima, Mohamed
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [4] NEW FINITE-TIME STABILITY ANALYSIS OF STOCHASTIC FRACTIONAL-ORDER TIME-DELAY SYSTEMS
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Arfaoui, Hassen
    Rguigui, Hafedh
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1011 - 1018
  • [5] Finite-time stability of fractional-order stochastic singular systems with time delay and white noise
    Mathiyalagan, Kalidass
    Balachandran, Krishnan
    COMPLEXITY, 2016, 21 (S2) : 370 - 379
  • [6] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    吴然超
    黑鑫东
    陈立平
    Communications in Theoretical Physics, 2013, 60 (08) : 189 - 193
  • [7] Finite-Time Stability of Fractional-Order Neural Networks with Delay
    Wu Ran-Chao
    Hei Xin-Dong
    Chen Li-Ping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (02) : 189 - 193
  • [8] A Result Regarding Finite-Time Stability for Hilfer Fractional Stochastic Differential Equations with Delay
    Li, Man
    Niu, Yujun
    Zou, Jing
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [9] New results on finite-time stability for fractional-order neural networks with proportional delay
    Yang, Zhanying
    Zhang, Jie
    Hu, Junhao
    Mei, Jun
    NEUROCOMPUTING, 2021, 442 : 327 - 336
  • [10] Finite-Time Stability for Nonlinear Fractional Differential Equations with Time Delay
    閤华珍
    寇春海
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (05) : 446 - 453