SPOT-Fold: Fragment-Free Protein Structure Prediction Guided by Predicted Backbone Structure and Contact Map

被引:11
作者
Cai, Yufeng [1 ]
Li, Xiongjun [1 ]
Sun, Zhe [1 ]
Lu, Yutong [1 ]
Zhao, Huiying [2 ]
Hanson, Jack [3 ]
Paliwal, Kuldip [3 ]
Litfin, Thomas [4 ,5 ]
Zhou, Yaoqi [4 ,5 ]
Yang, Yuedong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Guangzhou 510000, Guangdong, Peoples R China
[3] Griffith Univ, Signal Proc Lab, Brisbane, Qld 4122, Australia
[4] Griffith Univ, Inst Glyc, Southport, Qld 4222, Australia
[5] Griffith Univ, Sch Informat & Commun Technol, Southport, Qld 4222, Australia
基金
中国国家自然科学基金; 国家重点研发计划; 英国医学研究理事会;
关键词
protein structure prediction; template-free modeling; molecular dynamics; contact map; deep learning; CASP; CRYSTALLOGRAPHY; RECOGNITION; SEQUENCES; ALIGNMENT;
D O I
10.1002/jcc.26132
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protein structure determination has long been one of the most challenging problems in molecular biology for the past 60 years. Here we present an ab initio protein tertiary-structure prediction method assisted by predicted contact maps from SPOT-Contact and predicted dihedral angles from SPIDER 3. These predicted properties were then fed to the crystallography and NMR system (CNS) for restrained structure modeling. The resulted structures are first evaluated by the potential energy calculated by CNS, followed by dDFIRE energy function for model selections. The method called SPOT-Fold has been tested on 241 CASP targets between 67 and 670 amino acid residues, 60 randomly selected globular proteins under 100 amino acids. The method has a comparable accuracy to other contact-map-based modeling techniques. (c) 2019 Wiley Periodicals, Inc.
引用
收藏
页码:745 / 750
页数:6
相关论文
共 38 条
  • [1] CONFOLD2: improved contact-driven ab initio protein structure modeling
    Adhikari, Badri
    Cheng, Jianlin
    [J]. BMC BIOINFORMATICS, 2018, 19
  • [2] CONFOLD: Residue-residue contact-guided ab initio protein folding
    Adhikari, Badri
    Bhattacharya, Debswapna
    Cao, Renzhi
    Cheng, Jianlin
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2015, 83 (08) : 1436 - 1449
  • [3] How cryo-EM is revolutionizing structural biology
    Bai, Xiao-Chen
    McMullan, Greg
    Scheres, Sjors H. W.
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2015, 40 (01) : 49 - 57
  • [4] Bax A., 1993, NMR PROTEINS, P33, DOI [10.1007/978-1-349-12749-8_2, DOI 10.1007/978-1-349-12749-8_2]
  • [5] Protein and peptide folding explored with molecular simulations
    Brooks, CL
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (06) : 447 - 454
  • [6] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [7] Version 1.2 of the Crystallography and NMR system
    Brunger, Axel T.
    [J]. NATURE PROTOCOLS, 2007, 2 (11) : 2728 - 2733
  • [8] Analysis of superfamily specific profile-profile recognition accuracy
    Casbon, JA
    Saqi, MAS
    [J]. BMC BIOINFORMATICS, 2004, 5 (1)
  • [9] Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome
    Claussen, Jens Christian
    Skieceviciene, Jurgita
    Wang, Jun
    Rausch, Philipp
    Karlsen, Tom H.
    Lieb, Wolfgang
    Baines, John F.
    Franke, Andre
    Huett, Marc-Thorsten
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (06)
  • [10] Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution
    Duan, Y
    Kollman, PA
    [J]. SCIENCE, 1998, 282 (5389) : 740 - 744