Improving the accuracy of convexity splitting methods for gradient flow equations

被引:54
作者
Glasner, Karl [1 ]
Orizaga, Saulo [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Gradient flows; Cahn-Hilliard; Phase-field crystal; Spectral methods; Eyre splitting; BOUNDARY MOTION; TIME; ENERGY; SCHEME; 2ND-ORDER;
D O I
10.1016/j.jcp.2016.03.042
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces numerical time discretization methods which significantly improve the accuracy of the convexity-splitting approach of Eyre (1998) [7], while retaining the same numerical cost and stability properties. A first order method is constructed by iteration of a semi-implicit method based upon decomposing the energy into convex and concave parts. A second order method is also presented based on backwards differentiation formulas. Several extrapolation procedures for iteration initialization are proposed. We show that, under broad circumstances, these methods have an energy decreasing property, leading to good numerical stability. The new schemes are tested using two evolution equations commonly used in materials science: the Cahn-Hilliard equation and the phase field crystal equation. We find that our methods can increase accuracy by many orders of magnitude in comparison to the original convexity-splitting algorithm. In addition, the optimal methods require little or no iteration, making their computation cost similar to the original algorithm. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 25 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], IMAGE PROCESSING ANA
[3]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[4]   NUMERICAL SCHEMES FOR A THREE COMPONENT CAHN-HILLIARD MODEL [J].
Boyer, Franck ;
Minjeaud, Sebastian .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (04) :697-738
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[6]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[7]   Applications of semi-implicit Fourier-spectral method to phase field equations [J].
Chen, LQ ;
Shen, J .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) :147-158
[8]   Controlling the accuracy of unconditionally stable algorithms in the Cahn-Hilliard equation [J].
Cheng, Mowei ;
Warren, James A. .
PHYSICAL REVIEW E, 2007, 75 (01)
[9]   An efficient algorithm for solving the phase field crystal model [J].
Cheng, Mowei ;
Warren, James A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) :6241-6248
[10]   High accuracy solutions to energy gradient flows from material science models [J].
Christlieb, Andrew ;
Jones, Jaylan ;
Promislow, Keith ;
Wetton, Brian ;
Willoughby, Mark .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :193-215