Spherical nilpotent orbits and abelian subalgebras in isotropy representations

被引:4
作者
Gandini, Jacopo [1 ]
Frajria, Pierluigi Moseneder [2 ]
Papi, Paolo [3 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Politecn Milan, Polo Reg Como, Via Valleggio 11, I-22100 Como, Italy
[3] Sapienza Univ Roma, Dipartimento Matemat, Ple A Moro 2, I-00185 Rome, Italy
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2017年 / 95卷
关键词
SYMMETRIC SPACES; IDEALS;
D O I
10.1112/jlms.12022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected semisimple algebraic group with Lie algebra g, let G(0) subset of G be the symmetric subgroup defined by an algebraic involution sigma and let g(1) subset of g be the isotropy representation of G(0). Given an abelian subalgebra a of g contained in g(1) and stable under the action of some Borel subgroup B-0 subset of G(0), we classify the B-0-orbits in a and characterize the sphericity of G(0)a. Our main tool is the combinatorics of sigma-minuscule elements in the affine Weyl group of g and that of strongly orthogonal roots in Hermitian symmetric spaces.
引用
收藏
页码:323 / 352
页数:30
相关论文
共 26 条
[1]   Regular functions on spherical nilpotent orbits in complex symmetric pairs: Classical non-Hermitian cases [J].
Bravi, Paolo ;
Chirivi, Rocco ;
Gandini, Jacopo .
KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (04) :717-787
[2]   SOME PROPERTIES OF HOMOGENEOUS SPHERICAL SPACES [J].
BRION, M .
MANUSCRIPTA MATHEMATICA, 1986, 55 (02) :191-198
[3]   Abelian ideals of Borel subalgebras and affine Weyl groups [J].
Cellini, P ;
Papi, P .
ADVANCES IN MATHEMATICS, 2004, 187 (02) :320-361
[4]   Abelian subalgebras in Z2-graded Lie algebras and affine Weyl groups [J].
Cellini, P ;
Frajria, PM ;
Papi, P .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (43) :2281-2304
[5]   On the structure of Borel stable abelian subalgebras in infinitesimal symmetric spaces [J].
Cellini, Paola ;
Frajria, Pierluigi Moeseneder ;
Papi, Paolo ;
Pasquali, Marco .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02) :399-437
[6]  
Collingwood David H., 1993, VANNOSTRAND REINHOLD
[8]  
Helgason S., 1978, DIFFERENTIAL GEOMETR, V80
[9]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[10]  
King DR, 2004, J LIE THEORY, V14, P339