In this paper, a Cauchy problem of two-dimensional heat conduction equation is investigated. This is a severely ill-posed problem. Based on the solution of Cauchy problem of two-dimensional heat conduction equation, we propose to solve this problem by modifying the kernel, which generates a well-posed problem. Error estimates between the exact solution and the regularized solution are given. We provide a numerical experiment to illustrate the main results.
机构:
Normandie Univ, Caen, France
UNICAEN, LMNO, F-14032 Caen, France
CNRS, UMR 6139, F-14032 Caen, FranceNormandie Univ, Caen, France
Caille, Laetitia
Delvare, Franck
论文数: 0引用数: 0
h-index: 0
机构:
Normandie Univ, Caen, France
UNICAEN, LMNO, F-14032 Caen, France
CNRS, UMR 6139, F-14032 Caen, FranceNormandie Univ, Caen, France
Delvare, Franck
Marin, Liviu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math & Comp Sci, Dept Math, Acad 14, Bucharest 010014, Romania
Romanian Acad, Inst Math Stat & Appl Math, 13 Calea 13 Septembrie, Bucharest 050711, RomaniaNormandie Univ, Caen, France
Marin, Liviu
Michaux-Leblond, Nathalie
论文数: 0引用数: 0
h-index: 0
机构:
Normandie Univ, Caen, France
UNICAEN, LMNO, F-14032 Caen, France
CNRS, UMR 6139, F-14032 Caen, FranceNormandie Univ, Caen, France
机构:
NingXia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
Hebei Normal Univ Sci & Technol, Coll Math & Informat Sci & Technol, Qinhuangdao, Hebei, Peoples R ChinaNingXia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
He, Shangqin
Feng, Xiufang
论文数: 0引用数: 0
h-index: 0
机构:
NingXia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R ChinaNingXia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China