Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility

被引:38
作者
Wilkens, H. L. [1 ]
Nikroo, A. [1 ]
Wall, D. R. [1 ]
Wall, J. R. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
关键词
D O I
10.1063/1.2718527
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into the traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time. (C) 2007 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 19 条
[1]   Oblique evaporation and surface diffusion [J].
Abelmann, L ;
Lodder, C .
THIN SOLID FILMS, 1997, 305 (1-2) :1-21
[2]   Highly reflective uranium mirrors for astrophysics applications [J].
Allred, DD ;
Squires, MB ;
Turley, RS ;
Cash, W ;
Shipley, A .
X-RAY MIRRORS, CRYSTALS, AND MULTILAYERS II, 2002, 4782 :212-223
[3]   Increase in Rosseland mean opacity for inertial fusion hohlraum walls [J].
Colombant, D ;
Klapisch, M ;
Bar-Shalom, A .
PHYSICAL REVIEW E, 1998, 57 (03) :3411-3416
[4]   Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations [J].
Dalla Torre, J ;
Gilmer, GH ;
Windt, DL ;
Kalyanaraman, R ;
Baumann, FH ;
O'Sullivan, PL ;
Sapjeta, J ;
de la Rubia, TD ;
Rouhani, MD .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (01) :263-271
[5]  
HANN S, 2006, COMMUNICATION 0905, P55004
[6]   Proof of principle experiments that demonstrate utility of cocktail hohlraums for indirect drive ignition [J].
Jones, O. S. ;
Schein, J. ;
Rosen, M. D. ;
Suter, L. J. ;
Wallace, R. J. ;
Dewald, E. L. ;
Glenzer, S. H. ;
Campbell, K. M. ;
Gunther, J. ;
Hammel, B. A. ;
Landen, O. L. ;
Sorce, C. M. ;
Olson, R. E. ;
Rochau, G. A. ;
Wilkens, H. L. ;
Kaae, J. L. ;
Kilkenny, J. D. ;
Nikroo, A. ;
Regan, S. P. .
PHYSICS OF PLASMAS, 2007, 14 (05)
[7]  
Kilkenny J, 1995, LASER PLASMA INTERAC
[8]  
LILLARD JA, 2005, ASM HDB B, V13, P370, DOI DOI 10.31399/asm.hb.v13b.a0003828
[9]   The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J].
Lindl, JD ;
Amendt, P ;
Berger, RL ;
Glendinning, SG ;
Glenzer, SH ;
Haan, SW ;
Kauffman, RL ;
Landen, OL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2004, 11 (02) :339-491
[10]   X-RAY-EMISSION FROM HIGH-Z MIXTURE PLASMAS GENERATED WITH INTENSE BLUE LASER-LIGHT [J].
NISHIMURA, H ;
ENDO, T ;
SHIRAGA, H ;
KATO, Y ;
NAKAI, S .
APPLIED PHYSICS LETTERS, 1993, 62 (12) :1344-1346