Footprint of plexcitonic states in low-power green-blue plasmonic random laser

被引:11
作者
Haddawi, S. F. [1 ,2 ,3 ]
Mirahmadi, M. [1 ]
Mbarak, H. [1 ]
Kodeary, A. K. [1 ,2 ]
Ghasemi, M. [1 ]
Hamidi, S. M. [1 ]
机构
[1] Shahid Beheshti Univ, Laser & Plasma Res Inst, Magnetoplasmon Lab, Tehran, Iran
[2] Univ Babylon, Dept Laser Phys, Coll Sci Woman, Babylon, Iraq
[3] Univ Baghdad, Dept Phys, Coll Sci, Baghdad, Iraq
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2019年 / 125卷 / 12期
关键词
LASING ACTION; ABSORPTION;
D O I
10.1007/s00339-019-3139-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Green-blue plasmonic random laser is attained by two-dimensional plexcitonic structure. The main gain plexcitonic media contained two-dimensional periodic arrays of gold nanowires which is covered by dye layer. Due to the change in the strength of exciton and plasmon coupling in these plexcitonic gain structures, different close loop, and thus random lasing must be takes place. For this purpose, we fabricate six samples with different plexcitonic power and pumped fabricated two-dimensional nanostructures by green nanosecond pulsed laser. Our results show efficient coherent random lasing due to the plexcitonic nanostructure in the blue, because two-photon absorption and also green part of the visible spectral region considering its applicability in the design and fabrication of compact and miniaturized random laser sources.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Influence of laser and material parameters on two photon absorption in Rhodamine B and Rhodamine 6G solutions in MeOH [J].
Ahmad, Rabia ;
Rafique, M. Shahid ;
Ajami, Ali ;
Bashir, Shazia ;
Husinsky, Wolfgang ;
Iqbal, Saman .
OPTIK, 2019, 183 :835-841
[2]   Fantastic exciton-plasmon coupling in dye-doped poly (vinyl pyrrolidone)/gold one-dimensional nano-grating [J].
Asgari, N. ;
Hamidi, S. M. .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 123 :358-373
[3]   Exciton-plasmon coupling in two-dimensional plexitonic nano grating [J].
Asgari, N. ;
Hamidi, S. M. .
OPTICAL MATERIALS, 2018, 81 :45-54
[4]   Novel Nanostructures and Materials for Strong Light Matter Interactions [J].
Baranov, Denis G. ;
Wersall, Martin ;
Cuadra, Jorge ;
Antosiewicz, Tomasz J. ;
Shegai, Timur .
ACS PHOTONICS, 2018, 5 (01) :24-42
[5]   Strong Exciton-Plasmon Coupling in Silver Nanowire Nanocavities [J].
Beane, Gary ;
Brown, Brendan S. ;
Johns, Paul ;
Devkota, Tuphan ;
Hartland, Gregory V. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (07) :1676-1681
[6]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[7]   Exciton-plasmon coupling interactions: from principle to applications [J].
Cao, En ;
Lin, Weihua ;
Sun, Mengtao ;
Liang, Wenjie ;
Song, Yuzhi .
NANOPHOTONICS, 2018, 7 (01) :145-167
[8]  
Dery H., 2017, PHYS REV X, V7
[9]   Lasing action in periodic arrays of nanoparticles [J].
Dridi, Montacer ;
Schatz, George C. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (05) :818-823
[10]   Ultrahigh refractive index sensitivity via lattice-induced meta-dipole modes in flat metallic nanoantenna arrays [J].
Gutha, Rithvik R. ;
Sadeghi, Seyed M. ;
Hatef, Ali ;
Sharp, Christina ;
Lin, Yongbin .
APPLIED PHYSICS LETTERS, 2018, 112 (22)