Topographic features of nano-pores within the osteochondral interface and their effects on transport properties -a 3D imaging and modeling study

被引:11
作者
Pouran, Behdad [1 ,8 ]
Raoof, Amir [3 ]
de Winter, D. A. Matthijs [1 ,4 ]
Arbabi, Vahid [1 ,10 ]
Bleys, Ronald L. A. W. [5 ]
Beekman, Frederik J. [7 ,8 ,9 ]
Zadpoor, Amir. A. [2 ]
Malda, Jos [1 ,6 ]
Weinans, Harrie [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Dept Orthopaed, Utrecht, Netherlands
[2] Delft Univ Technol, Fac Mech Maritime & Mat Engn, Dept Biomech Engn, Delft, Netherlands
[3] Univ Utrecht, Fac Geosci, Hydrogeol, Utrecht, Netherlands
[4] Wetsus, Ctr Excellence Sustainable Water Technol, Leeuwarden, Netherlands
[5] Univ Med Ctr Utrecht, Dept Anat, Utrecht, Netherlands
[6] Univ Utrecht, Dept Equine Sci, Utrecht, Netherlands
[7] Delft Univ Technol, Sect Radiat Detect & Med Imaging, Delft, Netherlands
[8] MILabs, Utrecht, Netherlands
[9] Univ Med Ctr Utrecht, Dept Translat Neurosci, Utrecht, Netherlands
[10] Univ Birjand, Dept Mech Engn, Orthopaed BioMech Res Grp, Birjand, Iran
关键词
Osteochondral junction; Solute transport; Permeability; Nanopore architecture; Pore -scale modelling; ARTICULAR-CARTILAGE; SOLUTE TRANSPORT; SUBCHONDRAL BONE; PERMEABILITY; DIFFUSION; CHARGE;
D O I
10.1016/j.jbiomech.2021.110504
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Recent insights suggest that the osteochondral interface plays a central role in maintaining healthy articulating joints. Uncovering the underlying transport mechanisms is key to the understanding of the crosstalk between articular cartilage and subchondral bone. Here, we describe the mechanisms that facilitate transport at the osteochondral interface. Using scanning electron microscopy (SEM), we found a continuous transition of mineralization architecture from the non-calcified cartilage towards the calcified cartilage. This refurbishes the classical picture of the so-called tidemark; a well-defined discontinuity at the osteochondral interface. Using focused-ion-beam SEM (FIB-SEM) on one osteochondral plug derived from a human cadaveric knee, we elucidated that the pore structure gradually varies from the calcified cartilage towards the subchondral bone plate. We identified nano-pores with radius of 10.71 +/- 6.45 nm in calcified cartilage to 39. 1 +/- 26.17 nm in the subchondral bone plate. The extracted pore sizes were used to construct 3D pore-scale numerical models to explore the effect of pore sizes and connectivity among different pores. Results indicated that connectivity of nano-pores in calcified cartilage is highly compromised compared to the subchondral bone plate. Flow simulations showed a permeability decrease by about 2000-fold and solute transport simulations using a tracer (iodixanol, 1.5 kDa with a free diffusivity of 2.5 x 10(10) m(2)/s) showed diffusivity decrease by a factor of 1.5. Taken together, architecture of the nano-pores and the complex mineralization pattern in the osteochondral interface considerably impacts the cross-talk between cartilage and bone. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 32 条
[1]   An Experimental and Finite Element Protocol to Investigate the Transport of Neutral and Charged Solutes across Articular Cartilage [J].
Arbabi, Vahid ;
Pouran, Behdad ;
Zadpoor, Amir. A. ;
Weinans, Harrie .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (122)
[2]   Neutral solute transport across osteochondral interface: A finite element approach [J].
Arbabi, Vahid ;
Pouran, Behdad ;
Weinans, Harrie ;
Zadpoor, Amir A. .
JOURNAL OF BIOMECHANICS, 2016, 49 (16) :3833-3839
[3]   Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model [J].
Arbabi, Vahid ;
Pouran, Behdad ;
Weinans, Harrie ;
Zadpoor, Amir A. .
JOURNAL OF BIOMECHANICS, 2016, 49 (09) :1510-1517
[4]   Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis [J].
Bajpayee, Ambika G. ;
Wong, Cliff R. ;
Bawendi, Moungi G. ;
Frank, Eliot H. ;
Grodzinsky, Alan J. .
BIOMATERIALS, 2014, 35 (01) :538-549
[5]   Dynamic permeability of the lacunar-canalicular system in human cortical bone [J].
Benalla, M. ;
Palacio-Mancheno, P. E. ;
Fritton, S. P. ;
Cardoso, L. ;
Cowin, S. C. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2014, 13 (04) :801-812
[6]   Estimation of bone permeability using accurate microstructural measurements [J].
Beno, Thoma ;
Yoon, Young-June ;
Cowin, Stephen C. ;
Fritton, Susannah P. .
JOURNAL OF BIOMECHANICS, 2006, 39 (13) :2378-2387
[7]  
Burstein D, 2001, MAGNET RESON MED, V45, P36, DOI 10.1002/1522-2594(200101)45:1<36::AID-MRM1006>3.0.CO
[8]  
2-W
[9]   Solute transport across the articular surface of injured cartilage [J].
Chin, Hooi Chuan ;
Moeini, Mohammad ;
Quinn, Thomas M. .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013, 535 (02) :241-247
[10]   FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle [J].
de Winter, D. A. Matthijs ;
Meirer, Florian ;
Weckhuysen, Bert M. .
ACS CATALYSIS, 2016, 6 (05) :3158-3167