COFINITENESS AND NON-VANISHING OF LOCAL COHOMOLOGY MODULES

被引:4
作者
Bagheriyeh, Iraj [1 ]
Bahmanpour, Kamal [2 ]
A'Zami, Jafar [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Hashtroud Branch, Hashtroud, Iran
[2] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
关键词
Associated primes; cofinite modules; Krull dimension; local cohomology; IDEALS; PRIMES;
D O I
10.1216/JCA-2014-6-3-305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian local ring, I an ideal of R, and let M be a non-zero finitely generated R-module. In this paper, we establish some new properties of the local cohomology modules H-I(i)(M), i >= 0. In particular, we show that if (R, m) is a Noetherian local integral domain of dimension d <= 4 which is a homomorphic image of a Cohen-Macaulay ring and x(1),..., x(n) is a part of a system of parameters for R, then for all i >= 0, the R-modules H-I(i)(R) are I-cofinite, where I = (x(1),..., x(n)). Also, we prove that if (R, m) is a Noetherian local ring of dimension d and x(1),..., x(t) is a part of a system of parameters for R, then H-m(d-t)(H-(x1,...,xt)(t)(R)) not equal 0. In particular, mu(d) (t)(m, H-(x1....,xt)(t) (R)) not equal 0 and injdim(R)(H-(x1,...,xt)(t)(R)) >= d - t.
引用
收藏
页码:305 / 321
页数:17
相关论文
共 19 条
[1]   Cofiniteness of extension functors of cofinite modules [J].
Abazari, Rasoul ;
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2011, 330 (01) :507-516
[2]   GENERALIZATION OF THE LICHTENBAUM-HARTSHORNE VANISHING THEOREM [J].
Bagheriyeh, Iraj ;
A'zami, Jafar ;
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) :134-137
[3]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[4]  
Brodmann M. P., 1998, LOCAL COHOMOLOGY ALG
[5]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[6]  
Grothendieck A., 1966, LECT NOTES MATH, V862
[7]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+
[8]  
HUNEKE C, 1992, RES NOT MAT, V2, P93
[10]   The f-depth of an ideal on a module [J].
Lü, RC ;
Tang, ZM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :1905-1912