The spans in Brownian motion

被引:1
|
作者
Evans, Steven [1 ]
Pitman, Jim [1 ]
Tang, Wenpin [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, 367 Evans Hall, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 03期
关键词
Brownian span set; Random set; Energy method; Fractal projection; Hausdorff dimension; Multiple point; Self-intersection; Local time; Self-similar; INTERSECTION LOCAL TIME; SELF-INTERSECTION; MULTIPLE POINTS; TANAKA FORMULA; INVARIANCE-PRINCIPLE; DIRICHLET PROCESSES; OCCUPATION FIELD; JOINT CONTINUITY; LARGE DEVIATIONS; POLYMER-CHAINS;
D O I
10.1214/16-AIHP749
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For d is an element of {1, 2, 3}, let (B-t(d); t >= 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set Span(d) := {t - s; B-s(d) = B-t(d). for some 0 <= s <= t}. We prove that almost surely the random set Span(d) is sigma-compact and dense in R+. In addition, we show that Span(1) = R+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 1/2 almost surely. We also list a number of conjectures and open problems.
引用
收藏
页码:1108 / 1135
页数:28
相关论文
共 50 条
  • [21] An Approximation of Subfractional Brownian Motion
    Shen, Guangjun
    Yan, Litan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (09) : 1873 - 1886
  • [22] Gravitation versus Brownian motion
    Banerjee, Sayan
    Burdzy, Krzysztof
    Duarte, Mauricio
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1531 - 1565
  • [23] On the density of branching Brownian motion
    Oz, Mehmet
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 229 - 247
  • [24] UNBIASED SHIFTS OF BROWNIAN MOTION
    Last, Guenter
    Moerters, Peter
    Thorisson, Hermann
    ANNALS OF PROBABILITY, 2014, 42 (02) : 431 - 463
  • [25] On skew sticky Brownian motion
    Touhami, Wajdi
    STATISTICS & PROBABILITY LETTERS, 2021, 173
  • [26] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [27] VARIABLY SKEWED BROWNIAN MOTION
    Barlow, Martin
    Burdzy, Krzysztof
    Kaspi, Haya
    Mandelbaum, Avi
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 57 - 66
  • [28] Isomorphisms of β-Dyson's Brownian motion with Brownian local time
    Lupu, Titus
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [29] Some Explicit Distributions for Brownian Motion Indexed by the Brownian Tree
    Le Gall, Jean-Francois
    Riera, Armand
    MARKOV PROCESSES AND RELATED FIELDS, 2020, 26 (04) : 659 - 686
  • [30] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Tong, Chang-qing
    Lin, Zheng-yan
    Zheng, Jing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 597 - 602