The spans in Brownian motion

被引:1
|
作者
Evans, Steven [1 ]
Pitman, Jim [1 ]
Tang, Wenpin [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, 367 Evans Hall, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 03期
关键词
Brownian span set; Random set; Energy method; Fractal projection; Hausdorff dimension; Multiple point; Self-intersection; Local time; Self-similar; INTERSECTION LOCAL TIME; SELF-INTERSECTION; MULTIPLE POINTS; TANAKA FORMULA; INVARIANCE-PRINCIPLE; DIRICHLET PROCESSES; OCCUPATION FIELD; JOINT CONTINUITY; LARGE DEVIATIONS; POLYMER-CHAINS;
D O I
10.1214/16-AIHP749
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For d is an element of {1, 2, 3}, let (B-t(d); t >= 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set Span(d) := {t - s; B-s(d) = B-t(d). for some 0 <= s <= t}. We prove that almost surely the random set Span(d) is sigma-compact and dense in R+. In addition, we show that Span(1) = R+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 1/2 almost surely. We also list a number of conjectures and open problems.
引用
收藏
页码:1108 / 1135
页数:28
相关论文
共 50 条
  • [1] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493
  • [2] Brownian motion reflected on Brownian motion
    Krzysztof Burdzy
    David Nualart
    Probability Theory and Related Fields, 2002, 122 : 471 - 493
  • [3] On a Brownian motion with a hard membrane
    Mandrekar, Vidyadhar
    Pilipenko, Andrey
    STATISTICS & PROBABILITY LETTERS, 2016, 113 : 62 - 70
  • [4] Tanaka formula for the fractional Brownian motion
    Coutin, L
    Nualart, D
    Tudor, CA
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) : 301 - 315
  • [5] Some properties of a multifractional Brownian motion
    Lin, Zhengyan
    Zheng, Jing
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (07) : 687 - 692
  • [6] The Vervaat transform of Brownian bridges and Brownian motion
    Lupu, Titus
    Pitman, Jim
    Tang, Wenpin
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 31
  • [7] On bifractional Brownian motion
    Russo, F
    Tudor, CA
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (05) : 830 - 856
  • [8] Large deviations for subordinated Brownian motion and applications
    Gajda, Janusz
    Magdziarz, Marcin
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 149 - 156
  • [9] The dimension of the boundary of super-Brownian motion
    Mytnik, Leonid
    Perkins, Edwin
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 821 - 885
  • [10] The dimension of the boundary of super-Brownian motion
    Leonid Mytnik
    Edwin Perkins
    Probability Theory and Related Fields, 2019, 174 : 821 - 885