Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode

被引:120
作者
Yang, Xuerui [1 ]
Chen, Jiawei [1 ]
Zheng, Qinfeng [1 ]
Tu, Wenqiang [1 ]
Xing, Lidan [1 ,2 ]
Liao, Youhao [1 ,2 ]
Xu, Mengqing [1 ,2 ]
Huang, Qiming [1 ,2 ]
Cao, Guozhong [3 ]
Li, Weishan [1 ,2 ]
机构
[1] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Innovat Platform ITBMD Guangzhou Municipal, Engn Lab OFMHEB Guangdong Prov,Key Lab ETESPG GHE, Engn Res Ctr MTEES,Minist Educ,Res Ctr BMET Guang, Guangzhou 510006, Guangdong, Peoples R China
[3] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; MANGANESE OXIDE CATHODE; ATOMIC LAYER DEPOSITION; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; ELECTROLYTE ADDITIVES; INTERFACIAL STABILITY; POSITIVE ELECTRODES; VINYLENE CARBONATE;
D O I
10.1039/c8ta03041c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nickel-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode possesses high specific capacity and high discharge voltage, as the most promising cathode for high energy density lithium ion batteries, but suffers from serious cycling degradation. The present study revealed that the NCA cathode is stable with excellent cycling stability at voltages below 4.2 V, but suffers from serious degradation at voltages above 4.35 V. The characterization from SEM, TEM, XPS, FTIR, NMR, XRD and ICP as well as electrochemical measurements supported by theoretical calculations revealed that the trace of HF initially present in battery grade electrolytes likely induces the cycling stability degradation of the nickel-rich NCA cathode via accelerating the electrolyte decomposition. Our further research demonstrated that such cycling stability degradation can be eliminated through applying diethyl phenylphosphonite (DEPP) as an electrolyte additive, as DEPP is capable of shielding HF besides its ability to construct a protective cathode interphase, resulting in an excellent cycling stability of the nickel-rich NCA cathode.
引用
收藏
页码:16149 / 16163
页数:15
相关论文
共 102 条
[21]   A rocking chair type all-solid-state lithium ion battery adopting Li2O-ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte [J].
Ito, Seitaro ;
Fujiki, Satoshi ;
Yamada, Takanobu ;
Aihara, Yuichi ;
Park, Youngsin ;
Kim, Tae Young ;
Baek, Seung-Wook ;
Lee, Jae-Myung ;
Doo, Seokgwang ;
Machida, Nobuya .
JOURNAL OF POWER SOURCES, 2014, 248 :943-950
[22]   Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes [J].
Jaumann, Tony ;
Balach, Juan ;
Langklotz, Ulrike ;
Sauchuk, Viktar ;
Fritsch, Marco ;
Michaelis, Alexander ;
Teltevskij, Valerij ;
Mikhailova, Daria ;
Oswald, Steffen ;
Klose, Markus ;
Stephani, Guenter ;
Hauser, Ralf ;
Eckert, Juergen ;
Giebeler, Lars .
ENERGY STORAGE MATERIALS, 2017, 6 :26-35
[23]   Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries [J].
Jung, Roland ;
Metzger, Michael ;
Maglia, Filippo ;
Stinner, Christoph ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1361-A1377
[24]   Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries [J].
Jung, Sung-Kyun ;
Gwon, Hyeokjo ;
Hong, Jihyun ;
Park, Kyu-Young ;
Seo, Dong-Hwa ;
Kim, Haegyeom ;
Hyun, Jangsuk ;
Yang, Wooyoung ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[25]   Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li2-xMP2O7 (M = Fe, Co) for Lithium Rechargeable Battery Electrodes [J].
Kim, Hyungsub ;
Lee, Seongsu ;
Park, Young-Uk ;
Kim, Haegyeom ;
Kim, Jongsoon ;
Jeon, Seokwoo ;
Kang, Kisuk .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :3930-3937
[26]   A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates [J].
Kim, Ko-Eun ;
Jang, Jun Yeong ;
Park, Inbok ;
Woo, Myung-Heui ;
Jeong, Myung-Hwan ;
Shin, Woo Cheol ;
Ue, Makoto ;
Choi, Nam-Soon .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 :121-124
[27]   First-principles and experimental investigation of the morphology of layer-structured LiNiO2 and LiCoO2 [J].
Kim, Yongseon ;
Lee, Hyundeok ;
Kang, Shinhoo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (25) :12874-12881
[28]   Unraveling the Degradation Process of LiNi0.8Co0.15Al0.05O2 Electrodes in Commercial Lithium Ion Batteries by Electronic Structure Investigations [J].
Kleiner, Karin ;
Melke, Julia ;
Merz, Michael ;
Jakes, Peter ;
Nagel, Peter ;
Schuppler, Stefan ;
Liebau, Verena ;
Ehrenberg, Helmut .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (35) :19589-19600
[29]   Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C [J].
Lee, Dong-Ju ;
Scrosati, Bruno ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2011, 196 (18) :7742-7746
[30]   Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes [J].
Lee, JT ;
Lin, YW ;
Jan, YS .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :244-248