Overexpression of miR-135b attenuates pathological cardiac hypertrophy by targeting CACNA1C

被引:32
作者
Chu, Qun [1 ]
Li, Anqi [1 ]
Chen, Xi [1 ]
Qin, Ying [2 ]
Sun, Xi [1 ]
Li, Yanyao [1 ]
Yue, Er [1 ]
Wang, Cao [1 ]
Ding, Xueying [1 ]
Yan, Yan [1 ]
Zahra, Syeda Madiha [2 ]
Wang, Shuo [1 ]
Jiang, Yanan [1 ]
Bai, Yunlong [1 ,2 ]
Yang, Baofeng [1 ,2 ,3 ]
机构
[1] Harbin Med Univ, Coll Pharm, State Prov Key Labs Biomed Pharmaceut China, Dept Pharmacol,Key Lab Cardiovasc Res,Minist Educ, Harbin 150001, Heilongjiang, Peoples R China
[2] Heilongjiang Acad Med Sci, Translat Med Res & Cooperat Ctr Northern China, Harbin, Heilongjiang, Peoples R China
[3] Univ Melbourne, Fac Med Dent & Hlth Sci, Melbourne Sch Biomed Sci, Dept Pharmacol & Therapeut, Melbourne, Vic, Australia
基金
中国国家自然科学基金;
关键词
microRNA-135b; Cardiac hypertrophy; CACNA1C; L-type Ca2+ channels; GROWTH-FACTOR; HEART; REPRESSION; MICRORNAS; CELLS; MODEL;
D O I
10.1016/j.ijcard.2018.07.016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Cardiac hypertrophy is a serious factor underlying heart failure. Although a large number of pathogenic genes have been identified, the underlying molecular mechanisms of cardiac hypertrophy are still poorly understood. MicroRNAs are a class of small non-coding RNAs which regulate their target genes at the post-transcriptional level. L-type calcium channels play important role in hypertrophic signaling pathways, and CACNA1C is encoded by L-type calcium channels. Here, we hypothesize that the overexpression of miR-135b can attenuate hypertrophy by targeting CACNA1C. Methods: We test the functional involvement of miR-135b in cardiac hypertrophy model. In order to evaluate the effect of miR-135b in cardiac hypertrophy, miR-135b mimic, miR-135b agomir and alpha-MHC-miR-135b transgenic mice were used for the overexpression of miR-135b. Luciferase reporter assays were used to testify the binding of miR-135b to the CACNA1C 3'UTR. Results: Our results revealed that in a pathological cardiac hypertrophy model, the expression of miR-135b was clearly downregulated. Hypertrophic marker genes were upregulated after the knockdown of miR-135b in vitro, while the overexpression of miR-135b attenuated hypertrophy. These results suggested that miR-135b may weaken hypertrophic signals. We then explored the mechanism of miR-135b in hypertrophy and identified that CACNA1C was a target gene for miR-135b. The overexpression of miR-135b attenuated cardiac hypertrophy by targeting CACNA1C. Conclusions: Our studies revealed that miR-135b is a critical regulator of cardiomyocyte hypertrophy. Our findings may provide a novel strategy for the treatment of cardiac hypertrophy. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 241
页数:7
相关论文
共 25 条
[1]   ECM remodeling in hypertensive heart disease [J].
Berk, Bradford C. ;
Fujiwara, Keigi ;
Lehoux, Stephanie .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (03) :568-575
[2]   Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death [J].
Burashnikov, Elena ;
Pfeiffer, Ryan ;
Barajas-Martinez, Hector ;
Delpon, Eva ;
Hu, Dan ;
Desai, Mayurika ;
Borggrefe, Martin ;
Haeissaguerre, Michel ;
Kanter, Ronald ;
Pollevick, Guido D. ;
Guerchicoff, Alejandra ;
Laino, Ruben ;
Marieb, Mark ;
Nademanee, Koonlawee ;
Nam, Gi-Byoung ;
Robles, Roberto ;
Schimpf, Rainer ;
Stapleton, Dwight D. ;
Viskin, Sami ;
Winters, Stephen ;
Wolpert, Christian ;
Zimmern, Samuel ;
Veltmann, Christian ;
Antzelevitch, Charles .
HEART RHYTHM, 2010, 7 (12) :1872-1882
[3]   Taking microRNAs to heart [J].
Callis, Thomas E. ;
Wang, Da-Zhi .
TRENDS IN MOLECULAR MEDICINE, 2008, 14 (06) :254-260
[4]   Calcium influx through Cav1.2 is a proximal signal for pathological cardiomyocyte hypertrophy [J].
Chen, Xiongwen ;
Nakayama, Hiroyuki ;
Zhang, Xiaoying ;
Ai, Xiaojie ;
Harris, David M. ;
Tang, Mingxin ;
Zhang, Hongyu ;
Szeto, Christopher ;
Stockbower, Kathryn ;
Berretta, Remus M. ;
Eckhart, Andrea D. ;
Koch, Walter J. ;
Molkentin, Jeffery D. ;
Houser, Steven R. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2011, 50 (03) :460-470
[5]   Reciprocal Repression Between MicroRNA-133 and Calcineurin Regulates Cardiac Hypertrophy A Novel Mechanism for Progressive Cardiac Hypertrophy [J].
Dong, De-Li ;
Chen, Chang ;
Huo, Rong ;
Wang, Ning ;
Li, Zhe ;
Tu, Yu-Jie ;
Hu, Jun-Tao ;
Chu, Xia ;
Huang, Wei ;
Yang, Bao-Feng .
HYPERTENSION, 2010, 55 (04) :946-U249
[6]   The widespread impact of mammalian microRNAs on mRNA repression and evolution [J].
Farh, KKH ;
Grimson, A ;
Jan, C ;
Lewis, BP ;
Johnston, WK ;
Lim, LP ;
Burge, CB ;
Bartel, DP .
SCIENCE, 2005, 310 (5755) :1817-1821
[7]   Long QT, Syndactyly, Joint Contractures, Stroke and Novel CACNA1C Mutation: Expanding the Spectrum of Timothy Syndrome [J].
Gillis, Jane ;
Burashnikov, Elena ;
Antzelevitch, Charles ;
Blaser, Susan ;
Gross, Gil ;
Turner, Lesley ;
Babul-Hirji, Riyana ;
Chitayat, David .
AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2012, 158A (01) :182-187
[8]  
Honardoost M, 2015, CELL J, V17, P461
[9]   Insulin-like growth factor-induced hypertrophy of cultured adult rat cardiomyocytes is L-type calcium-channel-dependent [J].
Huang, CY ;
Hao, LY ;
Buetow, DE .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2002, 231 (1-2) :51-59
[10]   MicroRNA 135 Is Essential for Chronic Stress Resiliency, Antidepressant Efficacy, and Intact Serotonergic Activity [J].
Issler, Orna ;
Haramati, Sharon ;
Paul, Evan D. ;
Maeno, Hiroshi ;
Navon, Inbal ;
Zwang, Rayya ;
Gil, Shosh ;
Mayberg, Helen S. ;
Dunlop, Boadie W. ;
Menke, Andreas ;
Awatramani, Rajeshwar ;
Binder, Elisabeth B. ;
Deneris, Evan S. ;
Lowry, Christopher A. ;
Chen, Alon .
NEURON, 2014, 83 (02) :344-360