Automated acute lymphoblastic leukaemia detection system using microscopic images

被引:8
|
作者
Sukhia, Komal Nain [1 ]
Ghafoor, Abdul [1 ]
Riaz, Muhammad Mohsin [2 ]
Iltaf, Naima [1 ]
机构
[1] NUST, Islamabad, Pakistan
[2] COMSATS Islamabad, CAST, Islamabad, Pakistan
关键词
cellular biophysics; principal component analysis; expectation-maximisation algorithm; feature extraction; medical image processing; image segmentation; image classification; blood; cancer; microscopic images; automatic approach; acute lymphoblastic leukaemia classification; white blood cell nuclei; expectation maximisation algorithm; automated acute lymphoblastic leukaemia detection system; sparse representation; CLASSIFICATION;
D O I
10.1049/iet-ipr.2018.5471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic and novel approach for acute lymphoblastic leukaemia classification is proposed. The proposed scheme is based on pre-processing and segmentation of white blood cell nuclei using expectation maximisation algorithm, feature extraction, feature selection using principal component analysis and classification using sparse representation. The accuracy of the proposed scheme significantly outperforms the existing schemes in terms of acute lymphoblastic leukaemia classification.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [21] An automated lung nodule detection system for CT images using synthetic minority oversampling
    Mehre, Shrikant A.
    Mukhopadhyay, Sudipta
    Dutta, Anirvan
    Harsha, Nagam Chaithan
    Dhara, Ashis Kumar
    Khandelwal, Niranjan
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [22] Computer Aided Diagnostic System for Detection of Leukemia using Microscopic Images
    Rawat, Jyoti
    Singh, Annapurna
    Bhadauria, H. S.
    Virmani, Jitendra
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS, 2015, 70 : 748 - 756
  • [23] Acute Lymphoblastic Leukemia Disease Detection Using Image Processing and Machine Learning
    Chavan, Abhishek D.
    Thakre, Anuradha
    Chopade, Tulsi Vijay
    Fernandes, Jessica
    Gawari, Omkar S.
    Gore, Sonal
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT II, 2022, 1614 : 38 - 51
  • [24] Classification of acute lymphoblastic leukaemia using hybrid hierarchical classifiers
    Jyoti Rawat
    Annapurna Singh
    H. S. Bhadauria
    Jitendra Virmani
    J. S. Devgun
    Multimedia Tools and Applications, 2017, 76 : 19057 - 19085
  • [25] Hardware Segmentation on Digital Microscope Images for Acute Lymphoblastic Leukemia Diagnosis Using Xilinx System Generator
    ElDahshan, Kamal A.
    Masameer, Emad H.
    Youssef, Mohammed I.
    Mustafa, Mohammed A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (09) : 33 - 37
  • [26] A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells
    Zolfaghari, Mohammad
    Sajedi, Hedieh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6723 - 6753
  • [27] A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells
    Mohammad Zolfaghari
    Hedieh Sajedi
    Multimedia Tools and Applications, 2022, 81 : 6723 - 6753
  • [28] An Automated Microscopic Malaria Parasite Detection System Using Digital Image Analysis
    Yoon, Jung
    Jang, Woong Sik
    Nam, Jeonghun
    Mihn, Do-CiC
    Lim, Chae Seung
    DIAGNOSTICS, 2021, 11 (03)
  • [29] Outcomes of adolescents with acute lymphoblastic leukaemia
    Feng, J.
    Cheng, Frankie W. T.
    Chiang, Alan K. S.
    Lam, Grace K. S.
    Chow, Terry T. W.
    Ha, S. Y.
    Luk, C. W.
    Li, C. H.
    Ling, S. C.
    Yau, P. W.
    Ho, Karin K. H.
    Leung, Alex W. K.
    Chan, Natalie P. H.
    Ng, Margaret H. L.
    Li, C. K.
    HONG KONG MEDICAL JOURNAL, 2022, 28 (03) : 204 - 214
  • [30] Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images
    Wang, Xingwei
    Zheng, Bin
    Li, Shibo
    Mulvihill, John J.
    Chen, Xiaodong
    Liu, Hong
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (04)