Automated acute lymphoblastic leukaemia detection system using microscopic images

被引:8
|
作者
Sukhia, Komal Nain [1 ]
Ghafoor, Abdul [1 ]
Riaz, Muhammad Mohsin [2 ]
Iltaf, Naima [1 ]
机构
[1] NUST, Islamabad, Pakistan
[2] COMSATS Islamabad, CAST, Islamabad, Pakistan
关键词
cellular biophysics; principal component analysis; expectation-maximisation algorithm; feature extraction; medical image processing; image segmentation; image classification; blood; cancer; microscopic images; automatic approach; acute lymphoblastic leukaemia classification; white blood cell nuclei; expectation maximisation algorithm; automated acute lymphoblastic leukaemia detection system; sparse representation; CLASSIFICATION;
D O I
10.1049/iet-ipr.2018.5471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An automatic and novel approach for acute lymphoblastic leukaemia classification is proposed. The proposed scheme is based on pre-processing and segmentation of white blood cell nuclei using expectation maximisation algorithm, feature extraction, feature selection using principal component analysis and classification using sparse representation. The accuracy of the proposed scheme significantly outperforms the existing schemes in terms of acute lymphoblastic leukaemia classification.
引用
收藏
页码:2548 / 2553
页数:6
相关论文
共 50 条
  • [1] Automatic detection of acute lymphoblastic leukaemia based on extending the multifractal features
    Abbasi, Mohamadreza
    Kermani, Saeed
    Tajebib, Ardeshir
    Amin, Morteza Moradi
    Abbasi, Manije
    IET IMAGE PROCESSING, 2020, 14 (01) : 132 - 137
  • [2] Detection of acute lymphoblastic leukaemia using extreme learning machine based on deep features from microscopic blood cell images
    Chand, Sunita
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 46 (04) : 263 - 285
  • [3] Automated Screening System for Acute Myelogenous Leukemia Detection in Blood Microscopic Images
    Agaian, Sos
    Madhukar, Monica
    Chronopoulos, Anthony T.
    IEEE SYSTEMS JOURNAL, 2014, 8 (03): : 995 - 1004
  • [4] Automated Detection of Acute Lymphoblastic Leukemia From Microscopic Images Based on Human Visual Perception
    Bodzas, Alexandra
    Kodytek, Pavel
    Zidek, Jan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [5] A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction
    Anwar, Shamama
    Alam, Afrin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (12) : 3113 - 3121
  • [6] Automated Detection of B Cell and T Cell Acute Lymphoblastic Leukaemia Using Deep Learning
    Anilkumar, K. K.
    Manoj, V. J.
    Sagi, T. M.
    IRBM, 2022, 43 (05) : 405 - 413
  • [7] A Framework for Early Detection of Acute Lymphoblastic Leukemia and Its Subtypes From Peripheral Blood Smear Images Using Deep Ensemble Learning Technique
    Perveen, Sajida
    Alourani, Abdullah
    Shahbaz, Muhammad
    Ashraf, M. Usman
    Hamid, Isma
    IEEE ACCESS, 2024, 12 : 29252 - 29268
  • [8] Deep Learning for the Detection of Acute Lymphoblastic Leukemia Subtypes on Microscopic Images: A Systematic Literature Review
    Mustaqim, Tanzilal
    Fatichah, Chastine
    Suciati, Nanik
    IEEE ACCESS, 2023, 11 : 16108 - 16127
  • [9] A decision support system for Acute Leukaemia classification based on digital microscopic images
    Negm, Ahmed S.
    Hassan, Osama A.
    Kandil, Ahmed H.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 2319 - 2332
  • [10] CLAHE enhanced hybrid feature descriptors for classification of acute lymphoblastic leukaemia in blood smear images
    Tali, Renuka Veerappa
    Borra, Surekha
    Dinnepu, Vijay Bhaskar Reddy
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2023, 43 (04) : 309 - 328