Bifurcation Control in a Delayed Two-neuron Fractional Network

被引:9
作者
Zhao, Lingzhi [1 ,2 ,3 ]
Cao, Jinde [1 ,2 ,4 ]
Huang, Chengdai [1 ,2 ]
Alsaedi, Ahmed [4 ]
Al-Barakati, Abdullah [5 ]
Fardoun, Habib M. [5 ]
机构
[1] Southeast Univ, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Jiangsu, Peoples R China
[4] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math Res Grp, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Bifurcation control; fractional network; Hopf bifurcation; stability; time delays; ORDER DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; STABILITY ANALYSIS; PERIODIC-SOLUTION; NEURAL-NETWORKS; MODEL;
D O I
10.1007/s12555-016-1271-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The issue of bifurcation control for a delayed fractional network involving two neurons is concerned. Delay-dependent stability conditions and the bifurcation point are established by discussing the associated characteristic equation of the proposed network. Then, a delayed feedback controller is firstly designed to stabilize the Hopf bifurcation, and desirable dynamics is achieved. It is indicated that the designed controller is extremely effective which can postpone the onset of bifurcation by carefully selecting the feedback gain. Finally, simulation results are given to verify the efficiency of the theoretical results.
引用
收藏
页码:1134 / 1144
页数:11
相关论文
共 40 条
[21]   Fuzzy-Model-Based D-Stability and Nonfragile Control for Discrete-Time Descriptor Systems With Multiple Delays [J].
Li, Fanbiao ;
Shi, Peng ;
Wu, Ligang ;
Zhang, Xian .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (04) :1019-1025
[22]   Stochastic stability of semi-Markovian jump systems with mode-dependent delays [J].
Li, Fanbiao ;
Wu, Ligang ;
Shi, Peng .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (18) :3317-3330
[23]   Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system [J].
Li, Xiang ;
Wu, Ranchao .
NONLINEAR DYNAMICS, 2014, 78 (01) :279-288
[24]   Fractional differentiation by neocortical pyramidal neurons [J].
Lundstrom, Brian N. ;
Higgs, Matthew H. ;
Spain, William J. ;
Fairhall, Adrienne L. .
NATURE NEUROSCIENCE, 2008, 11 (11) :1335-1342
[25]  
Matsuura H, 2016, INT J INNOV COMPUT I, V12, P503
[26]   Bifurcations, stability, and monotonicity properties of a delayed neural network model [J].
Olien, L ;
Belair, J .
PHYSICA D, 1997, 102 (3-4) :349-363
[27]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[28]   A fractional order SEIR model with vertical transmission [J].
Ozalp, Nuri ;
Demirci, Elif .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :1-6
[29]   H∞ control of fractional linear systems [J].
Padula, Fabrizio ;
Alcantara, Salvador ;
Vilanova, Ramon ;
Visioli, Antonio .
AUTOMATICA, 2013, 49 (07) :2276-2280
[30]   Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials [J].
Reyes-Melo, E ;
Martinez-Vega, J ;
Guerrero-Salazar, C ;
Ortiz-Mendez, U .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 98 (02) :923-935